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Abstract 
DC–DC converter convert DC voltage signal from high level to low level signal or it can be vise 
versa depending on the type of converter used in system. Buck converter is one of the most important 
components of circuit, it converts voltage signal from high DC signal to low voltage. In buck 
converter, a high speed switching devices are placed and the better efficiency of power conversion 
with the steady state can be achieved. Its nonlinearities and uncertainties have increased the 
complexity of associated controllers so desired performance is achieved. However, cascade-PI 

controllers are still used to address this problem due to its relative implementation easiness, negating 
the complexity to the tuning strategy. The relative simplicity of system-specific PI control tuning 
methods enable a desired system response characteristic: robust, rapid error attenuation with minimal 
overshoot, zero steady-state off-set, to be easily attained. In this paper, an adaptive interaction is 
adopted to tune PI controller. The method is simple and effective way to perform gradient descent in 
the parameter space. The tuning algorithm requires no knowledge of the plant to be controlled. This 
makes the algorithm robust to changes in the plant. 
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1. Introduction 
DC-DC converters with computerized digital 

control methods picked up ubiquity because of 
their high productivity, low power utilization, 

higher resistance to natural changes, for example, 

temperature and maturing of parts, capacity to 

interface effortlessly, of programmability and to 

actualize advanced control plans. Their 

requisitions incorporate compact electronic 

gadgets, for example, computer and smart 

phones others (Mondal, 2014). 

 

A buck converter is a time varying system as its 

dynamical behavior depends on a switch 

controlled through PWM; moreover, the relation 
between the PWM duty cycle and the output 

voltage is nonlinear (Ibarra, et.al., 2015). 

 

Besides DC/DC converters have been 

successfully controlled in the past, it was until 

90s when its nonlinear characteristics where 

formally discussed and some advanced control 

techniques were used to improve their 

performance. The control objectives have been 

met before the system was thoroughly 

understood as stated in (Tse and Bernardo, 
2002). However, the convenience of modeling 

them in a simplified manner has made 

researchers also to follow this path despite of the 

need of two different models dependent on 

current conditions: continuous and discontinuous 

conduction modes (CCM and DCM). One of the 

most used methods to achieve linear 

representation of voltage converters is the Small-

signal state-space averaging (Tse and Bernardo, 

2002). 
 

Although simpler linear models allow the 

designer to consider well-known frequency-

domain constraints and design techniques, its 

validity is restricted to a determined bandwidth 

and can not attain nonlinear behavior; as the 

linear model is desired to be kept simple, the 

control loop complexity must be increased 

through a more dependable controller (Gupta, 

et.al., 1997). This has lead to an increasing 

number of works related to control 

implementation under parametric variations, 
uncertain environments, and ambiguous 

measurements which commonly adopts one 

single control technique and a determined set of 

tests to validate converter’s performance. 

 

The most commonly used control schemes are 

voltage mode control and current mode control 

(Dixon, 1985). The former takes the output 

voltage as its only feedback signal; however, its 

performance degrades on DCM. The current 

mode control effectively alleviates the sensitivity 
of the converter dynamics and could offer near 

uniform loop gain characteristics for both CCM 

and DCM operation. The key feature of current 
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mode control is that the inner loop changes the 

inductor into a voltage-dependent current source 

at frequencies lower than crossover frequency of 

the current loop. 

 

A commonly used way to implement a current 
mode control is using two Proportional Integral 

(PI) controllers; one for the inner current loop 

and one more for the outer voltage one. 

Furthermore, to improve the robustness, an on-

line self tuning PI controller by using adaptive 

interaction, is proposed. An adaptive interaction 

technique is used to tune the parameters of PI 

controller. Our approach is based on a recently 

developed theory of adaptive interaction (Lin, et. 

al., 2000). Using this theory, the controlled 

system is decomposed into three subsystems 
consisting the plant, the proportional, and the 

integral. The parameters of PI controller, 𝐾𝑝  and 

𝐾𝑖  are viewed as the interactions between these 

three subsystems. A general adaptation algorithm 

developed in the theory of adaptive interaction is 

applied to self-tuning these coefficients. The 

algorithm is simple and effective. 
 

2. Dynamic Model of Studied System 

 
Figure 1. The regulated buck converter with a 

resistive load 

 
Figure 2. The schematic of buck converter controllers 

 

The buck converter considered in this paper is 

shown in Fig. 1. It consists of a DC voltage 

source 𝑉𝑖𝑛 , the elements of buck converter 

represented by 𝐿 and 𝐶, the resistive load 𝑅, and 

the PI controllers of current loop (inner loop) and 

voltage loop (outer loop) represented by  𝐾𝑝𝑣 , 

𝐾𝑖𝑣 , 𝐾𝑝𝑖 , and 𝐾𝑖𝑖 , respectively. 

The schematic of cascade PI controllers for a 

buck converter is depicted in Fig. 2 (adopted 

from Chonsatidjamroen, et. al., 2012). 

 

The dynamic model of a controlled buck 

converter as shown in Fig. 1 derived from the 
generalized state-space averaging (GSSA) 

modeling method can be written as: 

 
𝒙 = 𝑨𝒙 + 𝑩 
𝒚 = 𝑪𝒙 + 𝑫𝒖

       (1) 

where state-variable 𝒙 =  𝑖𝐿 𝑣𝑜
𝑥𝑣 𝑥𝑖 𝑇, 

input  𝒖 =  𝑣𝑜
∗ , and output 𝒚 =  𝑣𝑜  . 

 

The details of 𝑨, 𝑩, 𝑪, 𝑫 are as follows: 
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Figure 3. Response of 𝑣𝑜  for changing the 𝑣𝑜

∗ from 

150 V to 180 V 

(Chonsatidjamroen, et. al., 2012) 

 

The set of parameters for the system in Fig.1 is 

given as follows: 𝑅 = 120 Ω, 𝑅 = 15 mH 

(∆𝐼 = 0.1 A), 𝐶 = 150 𝜇F (∆𝑉 = 10 mV), 

𝑉𝑖𝑛 = 200 V, and 𝑇𝑠 = 0.1 ms. Fig. 3 shows the 

comparison of the output voltage responses of 

the system in Fig. 1 between the exact topology 

model and the averaging model as given in (1) to 

a step change of the voltage command 𝑣𝑜
∗ from 

150 V to 180 V that occurs at 𝑡 = 0.1 s. The 

parameters of PI controllers for Fig. 3 are 

designed via the classical method by setting the 

bandwidth of current loop is faster than the 

bandwidth of voltage loop by 20 times. The PI 

controller parameters for this case are 𝐾𝑝𝑣 =

0.0205, 𝐾𝑖𝑣 = 2.16, 𝐾𝑝𝑖 = 0.2880, and 𝐾𝑖𝑖 =

432 in which 𝜔𝑛𝑣 , 𝜉𝑣 ,  𝜔𝑛𝑖 , and  𝜉𝑖  are equal to 

120 rad/s, 0.8, 20*120 rad/s, and 0.8, 
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respectively. The details how to design the PI 

controllers using the classical method for buck 

converter having the schematic as depicted in 

Fig. 2 can be found in (Tsang and Chan, 2005). 
 

3. Theory of Adaptive Interaction 
The theory of adaptive interaction considers a 

complex system consisting of 𝒩 subsystems 

which we called devices. Each device (indexed 

by 𝑛 ∈ 𝒩 ≔  1, 2, ⋯ , 𝒩 ) has an integrable 

output signal 𝑦𝑛  and an integrable input signal 

𝑥𝑛 . The dynamics of each device is described by 

a causal functional    

ℱ𝑛 ∶ 𝑥𝑛 → 𝑦𝑛 , 𝑛 ∈ 𝒩      (5) 

where 𝑥𝑛  
and 𝑦𝑛  

are the input and output spaces 

repectively. That is, the output 𝑦𝑛 𝑡  of the n𝑡  

device relates to its input 𝑥𝑛  𝑡  by 

𝑦𝑛  𝑡 =  ℱ𝑛 ∘ 𝑥𝑛  𝑡 = ℱ𝑛  𝑥𝑛 𝑡  ,     (6) 

where ∘ denote composition. 

 
Figure 4. A typical decomposition of a system for 

adaptive interaction 

 

We assume the Frechet derivative of ℱn  exixts. 

We further assume that each device is a single 

input single output system. 

 

An interaction between two devices consists of a 

functional dependence of the input of one of the 

devices on the outputs of the others and is 
mediated by an information carrying connections 

denoted by 𝑐. The set of all connections is 

denoted by 𝐶. 

 

We assume that there is at most one connection 

from one device to another. Let 𝑝𝑟𝑒𝑐  be the 

device whose output is conveyed by connection 𝑐 
and 𝑝𝑜𝑠𝑡𝑐  the device whose input depends on the 

signal conveyed by connection 𝑐. We denote the 

set of input interactions for the 𝑛th device by 

𝐼𝑛 =  𝑐 ∶ 𝑝𝑟𝑒𝑐 = 𝑛  and the set of output 

interactions by 𝑂𝑛 =  𝑐 ∶  𝑝𝑜𝑠𝑡𝑐 = 𝑛 . A typical 

system is illustrated in Figure 4. In the figure, for 

example, the set of input interactions of Device 2 

is 𝐼2 =  𝑐1 , 𝑐3  and the set of output interactions 

is 𝑂2 =  𝑐4 . Also, 𝑐1 connects Device 1 to 

Device 2, therefore 𝑝𝑟𝑒𝑐1
= 1, 𝑝𝑜𝑠𝑡𝑐1

= 2. 

 

For the purpose of this paper, we consider only 

linear interactions, that is, we assume that the 

input to a device is a linear combination of the 

output of other devices via connections in 𝐼𝑛  and 

possibly an external input signal 𝑢𝑛 (𝑡): 

𝑥𝑛  𝑡 = 𝑢𝑛  𝑡 +  𝛼𝑐𝑦𝑝𝑟𝑒 𝑐
 𝑡 𝑐∈𝐼𝑛

      (7) 

where 𝛼𝑐  is the connection weights. 

 

With this linear interaction, the dynamics of the 

system is described by 

𝑦𝑛  𝑡 = ℱ𝑛  𝑢𝑛 𝑡 +  𝛼𝑐𝑦𝑝𝑟𝑒 𝑐
 𝑡 𝑐∈𝐼𝑛

   (8) 

To simplify the notation, in the rest of the paper, 

we will eliminate when appropriate the explicit 

reference to time 𝑡. 
 

The goal of our adaptation algorithm is to adapt 

the connection weights 𝛼𝑐  so that some 

performance index 𝐸 𝑦1 ,⋯𝑦𝑛 ,𝑢1 , ⋯𝑢𝑛   as a 

function of the external inputs and outputs will 

be minimized. The algorithm is given in the 

following theorem (Lin, et. al., 2000): 

 

Theorem 1: For the system with dynamics given 
by 

𝑦𝑛 = ℱ𝑛  𝑢𝑛 +  𝛼𝑐𝑦𝑝𝑟𝑒 𝑐𝑐∈𝐼𝑛
       (9) 

If connection weights 𝛼𝑐  are adapted according 

to 

𝛼 𝑐 = −𝛾
𝜕𝐸

𝜕𝑦𝑝𝑜𝑠𝑡 𝑐

∘                

           ℱ𝑝𝑜𝑠𝑡 𝑐
′  𝑥𝑝𝑜𝑠𝑡 𝑐

 ∘ 𝑦𝑝𝑜𝑠𝑡 𝑐

    (10) 

and the above equation has a unique 

solution,then the performance index   will 

decrease monotonically with time. In fact, the 

following is always satisfied 

𝛼 𝑐 = −𝛾
𝜕𝐸

𝜕𝛼𝑐
, 𝑐 ∈ 𝐶      (11) 

where 𝛾 > 0 is some adaptation coefficient. 
 

4. Controller Designs 
In this section, the controller designs for the buck 

converter via the classical and adaptive 

interaction methods are illustrated. 
 

4.1 Classical Method 

The details of PI controller design using the 
classical method can be found in (Tsang and 

Chan, 2005). The PI parameters for the classical 

method in this paper are designed by selecting 

𝜉𝑣 = 0.8, 𝜉𝑖 = 0.8, 𝜔𝑛𝑖 = 20 × 120 rad/s, and 

𝜔𝑛𝑣 = 120 rad/s. Hence, the PI controller 

parameters designed by the classical method are 

given by 𝐾𝑝𝑣 = 0.0205, 𝐾𝑖𝑣 = 2.16, 𝐾𝑝𝑖 =

0.2880, and 𝐾𝑖𝑖 = 432. 

 

4.2 Adaptive Interaction Method 

Let 𝑒𝑣 = 𝑣𝑜
∗ − 𝑣𝑜  denote the voltage error and 

𝑒𝑖 = 𝑖𝐿
∗ − 𝑖𝐿  denote the current error. For a 

cascade PI control system, we decompose the 

system into three devices as shown in Figure 2: 

Device 1 is the proportional part with transfer 

function 1; Device 2 is the integral part with 

transfer function 𝑠−1; Device 3 is the plant. In 

this case, there are four adaptive connections: 

𝛼𝑐 = 𝐾𝑝𝑣 , 𝐾𝑖𝑣 , 𝐾𝑝𝑖 , and 𝐾𝑖𝑖 . Since for all these 
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connections, 𝑂𝑝𝑜𝑠𝑡 𝑐
= 𝑂3 = 0, the adaptation 

algorithm of the previous section reduces to 

𝛼 𝑐 = −𝛾
𝜕𝐸

𝜕𝑦𝑝𝑜𝑠𝑡 𝑐

∘                

           ℱ𝑝𝑜𝑠𝑡 𝑐
′  𝑥𝑝𝑜𝑠𝑡 𝑐

 ∘ 𝑦𝑝𝑜𝑠𝑡 𝑐

      (12) 

We take our goal as to minimize the error 

𝐸 = 𝑒2        (13) 
We then obtain the following Frechet tuning 

algorithm 

𝐾 
𝑃 = −2 𝛾 𝑒 ℱ3

′ °𝑒      (14) 
Similarly, we have 

𝐾 
𝐼 = −2 𝛾 𝑒 ℱ3

′ °𝑒𝑖𝑛𝑡                 (15) 

where 𝑒𝑖𝑛𝑡 =  𝑒 dt. 
 

Note that the self tuning algorithm for 𝑃 and 𝐼 all 

have the same form: It depends on the error 𝑒, 

the Frechet derivative, and the output of device. 

 
To calculate the Frechet derivative, let us 

consider the functional of the following form 

ℱ 𝑥 =  𝑓(𝑥 𝜏 , 𝜏)𝑑𝜏
𝑡

0
                (16) 

It can be shown (Luenberger, 1968, page 175) 

that the Frechet differential of ℱ is equal to its 

Gateaux differential which is given by 

𝛿ℱ 𝑥;  =  𝑓𝑥(𝑥 𝜏 , 𝜏)𝑑𝜏
𝑡

0
    (17) 

where 𝑓𝑥 =
𝜕𝑓

𝜕𝑥
. Therefore, the Frechet derivative 

of ℱ at 𝑥 is given by 

ℱ ′ 𝑥 ∘  =  𝑓𝑥(𝑥 𝜏 , 𝜏)𝑑𝜏
𝑡

0
   (18) 

For a linear time invariant plant with transfer 

function ℱ is given by the convolution 

ℱ 𝑥 =  𝑥 𝜏 𝑔 𝑡 − 𝜏 𝑑𝜏
𝑡

0
   (19) 

where 𝑔(𝑡) is the impulse response. Therefore 

the Frechet derivative 

ℱ ′ 𝑥 ∘  =  𝑔 𝑡 − 𝜏  𝜏 𝑑𝜏
𝑡

0
    (20) 

For many practical systems, as shown in (Lin, et. 
al., 2000) the Frechet derivative can be 

approximated by 

ℱ ′ 𝑥 ∘  = 𝛽      (21) 

where 𝛽 is some constant. 
 

Substitute the above approximation into the 

Frechet tuning algorithm, adopted from (Lin, et. 

al., 2000), self tuning algorithm is as follows 

𝐾 
𝑝𝑣 = −𝛾 𝑒𝑣𝑒𝑣       (22) 

𝐾 
𝑖𝑣 = −𝛾 𝑒𝑣𝑒𝑣

𝑖𝑛𝑡       (23) 

𝐾 
𝑝𝑖 = −𝛾 𝑒𝑖𝑒𝑖      (24) 

𝐾 
𝑖𝑖 = −𝛾 𝑒𝑖𝑒𝑖

𝑖𝑛𝑡       (25) 

 

5. Simulation Results 
In order to validate the control strategies as 

described above, digital simulation was carried 

out on a buck converter, as shown in Figure 1 

having the controllers designed by using the 

classical method and the Selft Tuning 

Proportional Integral (STPI) controller. The 
control simulation results are shown in Figure 5 

and Figure 6. 

 
Figure 5. Simulation result of buck converter 

with a conventional method 

 
Figure 6. Simulation result of buck converter 

with a STPI controller 

 

Figure 5 and 6 show the 𝑣𝑜  response to a step 

change of 𝑣𝑜
∗ from 150 V to 180 V that occurs at 

𝑡 = 0.1 second. Figure 5 shows that the response 

of the buck converter with classical method 
while Figure 6 depicts the response of the buck 

converter using Selft Tuning Proportional 

Integral (STPI) controller. Applying a classical 

method to the system, the transient response 

achieved is slightly lower than the STPI. There is 

no overshoot when STPI is applied while using 

classical method there is a little overshoot. 

Results in Fig. 5 and Figure 6 shows that the 

STPI performs slightly better than the classical 

method. 

 

6. Conclusions 
The control of the buck converter is investigated 

in this research work with Selft Tuning 

Proportional Integral (STPI). The conclusion is 

that STPI is found to be superior, more robust, 

faster, flexible, and less sensitive to the 

parameter variations as compared with classical 

PI controllers. Simulation results are presented to 

demonstrate the potential of the proposed 
scheme. It has been shown that the proposed 

scheme has several advantages such as, small 

steady state error, fast response, and small 

overshoot. 
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