Mapping of Landslide Susceptibility based on Analytical Hierarchy Process (AHP) in Sermo Dam and its Surrounding Areas, Kokap, Kulon Progo

  • Al hussein Flowers Rizqi Institut Teknologi Nasional Yogyakarta https://orcid.org/0000-0003-1787-230X
  • Vilman Sidik Institut Teknologi Nasional Yogyakarta
  • Fatimah Fatimah
  • Herning Dyah Kusuma Wijayanti
  • Muhammad Fatih Qodri
Keywords: Landslides, Nanggulan, Sermo, AHP, Kulon Progo

Abstract

The Nanggulan Formation as the oldest formation in the Kulon Progo Mountains is not only exposed in a type location in the Nanggulan area, Kalibawang. However, in the western area of ​​the Sermo Reservoir, precisely in the hills around the Kokap, the Nanggulan Formation is found in several places. The existence of the Nanggulan Formation around the Sermo Reservoir is suspected to have triggered the occurrence of ground movements in this area. The purpose of this research is to map the ground motion. The purpose of the study was to determine the potential for ground motion in the study area. The research area is included in the southern Kulon Progo Dome Mountain Zone. This ground motion zoning mapping was carried out based on the AHP (methodAnalytical Hierarchy Process) using the weighted values ​​of four parameters. The parameters used are slope, lithology, land use and rainfall. The results of AHP processing using Arc GIS software produce a landslide susceptibility zoning map which is divided into 5 classes (very low, low, medium, high and very high). Based on the results of mapping using the AHP method, the most vulnerable area is Hargowilis Village which is composed of claystone lithology from the Nanggulan Formation.

 

Keywords: Landslides, Nanggulan, Sermo, AHP, Kulon Progo

References

[1] Rahardjo, W., Sukandarrumidi, dan H.M.D. Rosidi (1995) Peta Geologi Lembar Yogyakarta, Jawa, edisi ke-2, Pusat Penelitian dan Pengembangan Geologi, Bandung.
[2] Widagdo, A., Pramumijoyo, S., & Harijoko, A. (2018, December). Tectonostratigraphy-volcanic of Gajah-Ijo-Menoreh Tertiary volcanic formations in Kulon Progo mountain area, Yogyakarta-Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 212, No. 1, p. 012052). IOP Publishing.
[3] Pambudi, S. (2016). KONFIGURASI CEKUNGAN PURBA FORMASI NANGGULAN DI DAERAH NANGGULAN, KULONPROGO, DAERAH ISTIMEWA YOGYAKARTA. ReTII.
[4] Sasongko, W., Doli, F. B., & Mahendra, F. H. M. (2018). KAJIAN HUBUNGAN DIAGENESIS DAN SIKUEN STRATIGRAFI FORMASI NANGGULAN BERDASARKAN ANALISIS PETROGRAFI BATUPASIR. KURVATEK, 3(1), 71-82.
[5] NURAINI, S. (2017). Geometri Perlapisan Batupasir Konglomeratan Sebagai Sisipan pada Formasi Nanggulan di Kali Watupuru dan Kali Songgo, Pegunungan Kulon Progo, Yogyakarta (Doctoral dissertation, sekolah tinggi teknologi nasional yogyakarta).
[6] NURAINI, S. (2018). PERBANDINGAN INTENSITAS ANTARA ARUS PASANG-SURUT DENGAN PENGARUH GELOMBANG TERHADAP PENGENDAPAN DELTA NANGGULAN DI KALI WATUPURU DAN KALI SONGGO, PEGUNUNGAN KULON PROGO, YOGYAKARTA (Doctoral dissertation, institut teknologI nasional yogyakarta).
[7] Nuraini, S. (2019). Fenomena Hard Ground Pada Batu Lempung Kaya Gampingan Formasi Nanggulan, Di Sungai Watupuru, Pegunungan Kulon Progo, Yogyakarta. KURVATEK, 4(1), 95-102.
[8] Nur’aini, S. Lapisan condensed section pada batulempung gampingan Nanggulan, Pegunungan Kulonprogo, DIY.
[9] Hani, D. S. N., & Pandita, H. (2020). Analisis Litofasies dan Lingkungan Pengendapan Formasi Nanggulan Lintasan Kali Songgo, Kabupaten Kulon Progo. ReTII, 298-309.
[10] Nugrahini, R. A., Hartono, H. G., & RA, T. L. (2020). PALEOMORFOGENESIS BENTANG ALAM KOMPLEKS GUNUNG IJO, KULONPROGO. KURVATEK, 5(2), 1-8.
[11] Harjanto, A., 2011. Vulkanostratigrafi di Daerah Kulon Progo dan Sekitarnya, Daerah Istimewa Yogyakarta, Jurnal Ilmiah MTG, Vol.4, No.2, Juli 2011.
[12] Rahardjo, W., Sukandarrumidi, &Rosidi, H.M.D. 2012. Geological Map of the Yogyakarta Sheet 1:1 00,000. Center for Geological Survei, Geological Agency.

[13] Maryanto, S., & Hasan, R. (2011). Korelasi-Regresi Antar parameter Petrofisika Batuan Beku dan Batugamping dari Daerah Pegunungan Kulonprogo, Daerah Istimewa Yogyakarta. Jurnal Geologi Indonesia, 6(4), 203-2ll.
[14] Irzon, R., & Permanadewi, S. (2010). Elements Study of Igneous and Altered Rocks in Kulonprogo and Its Surrounding Using ICP-MS. Proceeding PIT IAGI, Lombok, 1-10.
[15] Rizqi, A.F (2019). IDENTIFIKASI STRUKTUR GEOLOGI DAN IMPLIKASINYA TERHADAP PENYEBARAN BATUAN FORMASI ANDESIT TUA–SENTOLO DI SUNGAI NITEN, GIRIPURWO, KULON PROGO. Angkasa: Jurnal Ilmiah Bidang Teknologi, 11(2), 152-163.
[16] Nugroho, N. E., & Kristanto, W. A. D. (2020). Kajian Tingkat Risiko Tanah Longsor Desa Hargomulyo, Kecamatan Kokap, Kabupaten Kulonprogo. Jurnal Ilmiah Lingkungan Kebumian (JILK), 1(2), 9-25.
[17] Sari, S. N., & Prastowo, R. (2019). Peta Potensi Kerusakan Bangunan Akibat Kerentanan Gerakan Tanah Di Daerah Kalirejo Kulonprogo Yogyakarta. ReTII, 435-441.
[18] Wibowo, N. B., & Niyartama, T. F. (2015). Mikrozonasi Multidisaster Daerah Sekitar Waduk Sermo Berbasis Analisis Keputusan Multikriteria Simple Addtive Weight (SAW) Berdasarkan Pengukuran Mikrotremor. Jurnal Dialog dan Penanggulangan Bencana, 6(1), 1-11
[19] Amalia, N. R., Indrawan, I., & Warmada, I. W. (2018, December). Pengaruh Alterasi Hidrotermal terhadap Tingkat Kerentanan Longsor di Daerah Kalirejo dan Sekitarnya, Kabupaten Kulon Progo dan Purworejo. In PROCEEDING, SEMINAR NASIONAL KEBUMIAN KE-11 PERSPEKTIF ILMU KEBUMIAN DALAM KAJIAN BENCANA GEOLOGI DI INDONESIA 5–6 SEPTEMBER 2018. Departemen Teknik Geologi.
[20] Saaty, T. L. (1991). Some mathematical concepts of the analytic hierarchy process. Behaviormetrika, 18(29), 1-9.
[21] Makkasau, K. (2013). Penggunaan metode Analytic Hierarchy Process (AHP) dalam penentuan prioritas program kesehatan (studi kasus program Promosi Kesehatan). J@ ti Undip: Jurnal Teknik Industri, 7(2), 105-112.
[22] He, H., Hu, D., Sun, Q., Zhu, L. and Liu, Y., (2019). A landslide susceptibility assessment method based on GIS technology and an AHP-weighted information content method: A case study of southern Anhui, China. ISPRS International Journal of Geo-Information, 8(6), p.266.
[23] Peraturan Menteri Pekerjaan Umum Nomor 22/PRT/M/2007 Tahun 2007. Pedoman Penataan Ruang Kawasan Rawan Bencana Longsor.
[24] Van Zuidam, R. A. (1983). Guide to Geomorphologic Aerial Photographic Interpretation and Mapping. International Institute for Geo-Information Science and Earth Observation, Enschede, The Netherlands, 325.
[25] Pramudianti, E. and Hadmoko, D.S., (2013). Analisis Stabilitas Lereng Menggunakan Model Deterministik untuk Zonasi Rawan Longsorlahandi Sub-das Gintung, Kab. Purworejo. Jurnal Bumi Indonesia, 1(3).
[26] Pramumijoyo, S., Widjajanti, N., & Widagdo, A. (2021). Optimal design of the Sermo Fault deformation monitoring network using sensitivity criteria based on geological information. Arabian Journal of Geosciences, 14(20), 1-9.
[27] Karnawati, D., (2005), Bencana Alam Gerakan Massa Tanah di Indonesia dan Upaya Penaggulangannya, Penerbit Jurusan Teknik Geologi FT Universitas Gadjah Mada, Jogjakarta.
[28] Prasetya, H. N. E., Aditama, T., Sastrawiguna, G. I., Rizqi, A. F., & Zamroni, A. (2021, June). Analytical landslides prone area by using Sentinel-2 Satellite Imagery and geological data in Google Earth Engine (a case study of Cinomati Street, Bantul Regency, Daerah Istimewa Yogyakarta Province, Indonesia). In IOP Conference Series: Earth and Environmental Science (Vol. 782, No. 2, p. 022025). IOP Publishing.
Published
2021-11-09
How to Cite
Rizqi, A. hussein F., Sidik, V., Fatimah, F., Kusuma Wijayanti, H. D. and Fatih Qodri, M. (2021) “Mapping of Landslide Susceptibility based on Analytical Hierarchy Process (AHP) in Sermo Dam and its Surrounding Areas, Kokap, Kulon Progo”, ReTII, pp. 479 - 489. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/2659 (Accessed: 27January2025).