Overview Metode Fitoremediasi Terhadap Penyerapan Logam Berat Pada Air Terkontaminasi Menggunakan Jenis Tumbuhan Air

  • Fitra Kurniawan University

Abstract

Heavy metal contamination in the environment is a serious problem for public health that has an impact on sustainability and human survival. As a result, heavy metal contamination of water causes many diseases in humans such as carcinogenic diseases and other diseases. To solve this problem, there are a large number of new technologies in dealing with heavy metal pollution in water. Phytoremediation with aquatic plants to remove heavy metal contaminants, phytoremediation has been widely used to restore pollution in water. The purpose of this study is to provide general information about phytoremediation and the use of aquatic plants for phytoremediation of heavy metals from the environment. By discussing applied science and environmental engineering to produce sustainable products to improve water quality. This study shows the effectiveness of aquatic plant species and compares the absorption of heavy metals at different concentrations. Based on the literature study, there are various types of aquatic plants with efficient phytoremediation capabilities and need to be studied from different perspectives to make contaminated water phytoremediation an environmentally friendly method.

References

[1] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health Impacts of Air Pollution: A Review,” Front. Public Heal., vol. 8, 2020, doi: 10.3389/fpubh.2020.00014.
[2] M. Bamuwamye, P. Ogwok, V. Tumuhairwe, R. Eragu, H. Nakisozi, and P. E. Ogwang, “Human Health Risk Assessment of Heavy Metals in Kampala (Uganda) Drinking Water,” J. Food Res., vol. 6, no. 4, p. 6, 2017, doi: 10.5539/jfr.v6n4p6.
[3] L. Chen et al., “Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested,” Sci. Total Environ., vol. 615, no. 163, pp. 141–149, 2018, doi: 10.1016/j.scitotenv.2017.09.230.
[4] C. R. Delgado-González et al., “Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water,” Int. J. Environ. Res. Public Health, vol. 18, no. 10, 2021, doi: 10.3390/ijerph18105215.
[5] P. Li and J. Wu, “Drinking Water Quality and Public Health,” Expo. Heal., vol. 11, no. 2, pp. 73–79, 2019, doi: 10.1007/s12403-019-00299-8.
[6] F. Su, J. Wu, and S. He, “Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi’an city, China,” Hum. Ecol. Risk Assess., vol. 25, no. 1–2, pp. 158–175, 2019, doi: 10.1080/10807039.2019.1568860.
[7] A. Scheili, M. J. Rodriguez, and R. Sadiq, “Seasonal and spatial variations of source and drinking water quality in small municipal systems of two Canadian regions,” Sci. Total Environ., vol. 508, pp. 514–524, 2015, doi: 10.1016/j.scitotenv.2014.11.069.
[8] A. Kabata-Pendias, Trace Elements in Soils and Plants Third Edition. 1992.
[9] World Health Organization, “Drinking Water,” Available online: ine:, 2020. https://www.who.int/news-room/fact-sheets/detail/drinkingwater#:~%7B%7D:text=Contaminated water and poor sanitation,A%2C typhoid%2C and p
[10] M. Al osman, F. Yang, and I. Y. Massey, “Exposure routes and health effects of heavy metals on children,” BioMetals, vol. 32, no. 4, pp. 563–573, 2019, doi: 10.1007/s10534-019-00193-5.
[11] M. S. Sankhla, “Contaminant of Heavy Metals in Groundwater & its Toxic Effects on Human Health & Environment,” Int. J. Environ. Sci. Nat. Resour., vol. 18, no. 5, 2019, doi: 10.19080/ijesnr.2019.18.555996.
[12] H. Ali, E. Khan, and M. A. Sajad, “Phytoremediation of heavy metals-Concepts and applications,” Chemosphere, vol. 91, no. 7, pp. 869–881, 2013, doi: 10.1016/j.chemosphere.2013.01.075.
[13] L. Raskin, R. D. Smith, and D. E. Salt, “Phytoremediation of metals: using plants to remove pollutants from the environment Abbreviation EDTA ethylenediaminetetraacetic acid,” Curr. Opin. Biotechnol., pp. 8221–226, 1997.
[14] R. Isaksson, S. J. Balogh, and M. A. Farris, “Accumulation of mercury by the aquatic plant Lemna minor,” Int. J. Environ. Stud., vol. 64, no. 2, pp. 189–194, 2007, doi: 10.1080/00207230701238556.
[15] S. Bolisetty, M. Peydayesh, and R. Mezzenga, “Sustainable technologies for water purification from heavy metals: review and analysis,” Chem. Soc. Rev., vol. 48, no. 2, pp. 463–487, 2019, doi: 10.1039/c8cs00493e.
[16] S. Muthusaravanan et al., “Phytoremediation of heavy metals: mechanisms, methods and enhancements,” Environ. Chem. Lett., vol. 16, no. 4, pp. 1339–1359, 2018, doi: 10.1007/s10311-018-0762-3.
[17] R. E. Tanjung, F. Fahruddin, and M. F. Samawi, “Phytoremediation relationship of lead (Pb) by Eichhornia crassipes on pH, BOD and COD in groundwater,” J. Phys. Conf. Ser., vol. 1341, no. 2, 2019, doi: 10.1088/1742-6596/1341/2/022020.
[18] N. U. M. Nizam, M. M. Hanafiah, I. M. Noor, and H. I. A. Karim, “Efficiency of five selected aquatic plants in
phytoremediation of aquaculture wastewater,” Appl. Sci., vol. 10, no. 8, 2020, doi: 10.3390/APP10082712.
[19] A. A. Ansari, M. Naeem, S. S. Gill, and F. M. AlZuaibr, “Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application,” Egypt. J. Aquat. Res., vol. 46, no. 4, pp. 371–376, 2020, doi: 10.1016/j.ejar.2020.03.002.
[20] S. C. McCutcheon and J. L. Schnoor, “OVERVIEW OF PHYTOTRANSFORMATION AND CONTROL OF WASTESNo Title,” Phytoremediation Transform. Control Contam., pp. 1–58, 2003.
[21] S. Dixit and S. Tiwari, “Effective utilization of an aquatic weed in an eco-friendly treatment of polluted water bodies,” J. Appl. Sci. Environ. Manag., vol. 11, no. 3, pp. 41–44, 2007.
[22] Y. Zimmels, F. Kirzhner, and A. Malkovskaja, “Application of Eichhornia crassipes and Pistia stratiotes for treatment of urban sewage in Israel,” J. Environ. Manage., vol. 81, no. 4, pp. 420–428, 2006, doi: 10.1016/j.jenvman.2005.11.014.
[23] H. M. Saleh, R. F. Aglan, and H. H. Mahmoud, “Ludwigia stolonifera for remediation of toxic metals from simulated wastewater,” Chem. Ecol., vol. 35, no. 2, pp. 164–178, 2019, doi: 10.1080/02757540.2018.1546296.
[24] D. Singh, A. Tiwari, and R. Gupta, “Phytoremediation of lead from wastewater using aquatic plants,” Availab online, vol. 8, pp. 1–11, 2012, doi: 10.1016/S0012-821X(01)00601-X.
[25] T. M. Galal, Y. M. Al-Sodany, and H. M. Al-Yasi, “Phytostabilization as a phytoremediation strategy for mitigating water pollutants by the floating macrophyte Ludwigia stolonifera (Guill. & Perr.) P.H. Raven,” Int. J. Phytoremediation, vol. 22, no. 4, pp. 373–382, 2020, doi: 10.1080/15226514.2019.1663487.
[26] N. Ibrahim and G. El Afandi, “Phytoremediation uptake model of heavy metals (Pb, Cd and Zn) in soil using Nerium oleander,” Heliyon, vol. 6, no. 7, p. e04445, 2020, doi: 10.1016/j.heliyon.2020.e04445.
[27] R. Hanafy, W. Eweda, M. Zayed, and H. Khalil, “Potentiality of Using a. Pinnata To Bioremediate Different Heavy Metals From Polluted Draining Water,” Arab Univ. J. Agric. Sci., vol. 26, no. 1, pp. 359–372, 2018, doi: 10.21608/ajs.2018.14022.
[28] J. da S. Santos, M. da S. Pontas, R. Grillo, A. R. Fiorucci, G. J. de Arruda, and E. F. Santiago, “Physiological mechanisms and phytoremediation potential of the macrophyte Salvinia biloba towards a commercial formulation and an analytical standard of glyphosate,” Chemosphere, vol. 259, p. 127417, 2020, doi: 10.1016/j.chemosphere.2020.127417.
[29] Z. Liu et al., “A review on phytoremediation of mercury contaminated soils,” J. Hazard. Mater., vol. 400, p. 123138, 2020, doi: 10.1016/j.jhazmat.2020.123138.
[30] S. Arreghini, L. De Cabo, and A. F. De Iorio, “Phytoremediation of two types of sediment contaminated with Zn by Schoenoplectus americanus,” Int. J. Phytoremediation, vol. 8, no. 3, pp. 223–232, 2006, doi: 10.1080/15226510600846764.
[31] M. Kasman, A. Riyanti, S. Sy, and M. Ridwan, “Reduksi pencemar limbah cair industri tahu dengan tumbuhan melati air (Echinodorus palaefolius) dalam sistem kombinasi constructed wetland dan filtrasi,” J. Litbang Ind., vol. 8, no. 1, p. 39, 2018, doi: 10.24960/jli.v8i1.3832.39-46.
[32] J. Caroline and G. A. Moa, “Fitoremediasi logam timbal (Pb) (Echinodorus palaefolius) pada industri peleburan tembaga dan kuningan,” Semin. Nas. Sains dan Teknol. Terap. III, vol. 10, no. 3, pp. 733–744, 2015.
[33] M. M. Hanafiah, M. F. Zainuddin, N. U. M. Nizam, A. A. Halim, and A. Rasool, “Phytoremediation of aluminum and iron from industrial wastewater using Ipomoea aquatica and centella asiatica,” Appl. Sci., vol. 10, no. 9, 2020, doi: 10.3390/app10093064.
[34] I. Suhud, V. M. . Tiwow, and Hmzah Baharudin, “Adsorpsi Ion Kadmium(II) dari Larutannya Menggunakan Biomassa Akar dan Batang Kangkung Air (Ipomoea aquatica Forks),” J. Akad. Kim., vol. 4, no. November, pp. 153–158, 2012.
[35] Z. Flora and D. Kew, “Royal Botanical Gardens Kew; Richmond, VT, USA,” Available online, 2014.
[36] P. Hashim, H. Sidek, M. H. M. Helan, A. Sabery, U. D. Palanisamy, and M. Ilham, “Triterpene composition and bioactivities of centella asiatica,” Molecules, vol. 16, no. 2, pp. 1310–1322, 2011, doi: 10.3390/molecules16021310.
[37] A. Q. Jamil, “Perbedaan penyerapan logam Pb pada limbah cair antara tanaman kangkung air (Ipomoea aquatica forsk), genjer (Limnocharis flava) , dan semanggi (Marsilea drummondii L),” 2015.
[38] I. Oktoviani, T. A. Hanifah, and G. F. Kartika, “Potensi Tanaman Genjer (Limnocharis flava) Sebagai Fitoremidiator Ion Timbal (II).,” JOM FMIPA Univ. Riau, vol. 2, pp. 1–7, 2015.
[39] Priyanti and E. Yunita, “Uji Kemampuan Daya Serap Tumbuhan Genjer (Limnocharis flava) terhadap Logam Berat Besi (Fe) dan Mangan (Mn),” Pros. Semirata FMIPA Univ. Lampung, pp. 283–290, 2013.
[40] M. Delgado, M. Bigeriego, and E. Guardiola, “Uptake of Zn, Cr and Cd by water hyacinths,” Water Res., vol. 27, no. 2, pp. 269–272, 1993, doi: 10.1016/0043-1354(93)90085-V.
[41] M. Mkandawire and E. G. Dudel, “Accumulation of arsenic in Lemna gibba L. (duckweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany,” Sci. Total Environ., vol. 336, no. 1–3, pp. 81–89, 2005, doi: 10.1016/j.scitotenv.2004.06.002.
[42] J. A. Romero-Hernández, A. Amaya-Chávez, P. Balderas-Hernández, G. Roa-Morales, N. González-Rivas, and M. Á. Balderas-Plata, “Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes,” Int. J. Phytoremediation, vol. 19, no. 3, pp. 239–245, 2017, doi: 10.1080/15226514.2016.1207610.
[43] P. Sudarshan, M. K. Mahesh, and T. V. Ramachandra, “Dynamics of Metal Pollution in Sediment and Macrophytes of Varthur Lake, Bangalore,” Bull. Environ. Contam. Toxicol., vol. 104, no. 4, pp. 411–417, 2020, doi: 10.1007/s00128-020-02816-x.
[44] L. Polechońska and A. Klink, “Trace metal bioindication and phytoremediation potentialities of Phalaris arundinacea L. (reed canary grass),” Journal of Geochemical Exploration, vol. 146. pp. 27–33, 2014. doi: 10.1016/j.gexplo.2014.07.012.
[45] M. A. Jayasri and K. Suthindhiran, “Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation,” Appl. Water Sci., vol. 7, no. 3, pp. 1247–1253, 2017, doi: 10.1007/s13201-015-0376-x.
[46] K. S. Wang, L. C. Huang, H. S. Lee, P. Y. Chen, and S. H. Chang, “Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: Effects of cadmium speciation,” Chemosphere, vol. 72, no. 4, pp. 666–672, 2008, doi:
10.1016/j.chemosphere.2008.03.034.
[47] X. Zhang, A. J. Lin, F. J. Zhao, G. Z. Xu, G. L. Duan, and Y. G. Zhu, “Arsenic accumulation by the aquatic fern Azolla: Comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides,” Environ. Pollut., vol. 156, no. 3, pp. 1149–1155, 2008, doi: 10.1016/j.envpol.2008.04.002.
[48] Y. Uysal and F. Taner, “Effect of pH, temperature, and lead concentration on the bioremoval of lead from water using Lemna minor,” Int. J. Phytoremediation, vol. 11, no. 7, pp. 591–608, 2009, doi: 10.1080/15226510902717648.
[49] N. Sinulingga, K. Nurtjahja, and A. Karim, “Fitoremediasi Logam Merku (Hg) pada Media Air oleh Kangkung Air (Ipomoea aquatica Forsk),” J. Biol. Lingkungan, Ind. dan Kesehat., vol. 2, no. 1, pp. 75–81, 2015.
[50] M. Haryati, T. Purnomo, and K. Sunu, “Kemampuan Tanaman Genjer (Limnocharis Flava (L.)Buch.) Menyerap Logam Berat Timbal (Pb) Limbah Cair Kertas pada Biomassa dan Waktu Pemaparan Yang Berbeda,” LenteraBio, vol. 1, no. 3, pp. 131–138, 2012.
[51] R. Yunus and N. S. Prihatini, “Fitoremediasi Fe dan Mn Air Asam Tambang Batubara dengan Eceng Gondok (Eichornia crassipes) dan Purun Tikus (Eleocharis dulcis) pada Sistem LBB di PT. JBG Kalimantan Selatan,” Sainsmat J. Ilm. Ilmu Pengetah. Alam, vol. 7, no. 1, pp. 73–85, 2018.
Published
2022-11-11
How to Cite
Kurniawan, F. (2022) “Overview Metode Fitoremediasi Terhadap Penyerapan Logam Berat Pada Air Terkontaminasi Menggunakan Jenis Tumbuhan Air”, ReTII, pp. 247-254. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/3625 (Accessed: 22December2024).