Analisis Frekuensi Natural Velg Ring 16 Menggunakan Finite Element Method

  • Angger Bagus Prasetiyo Institut Teknologi Nasional Yogyakarta
  • Kartinasari Ayuhikmatin Sekarjati Institut Sains & Teknologi AKPRIND Yogyakarta
  • Sutrisna Program Studi Teknik Mesin, Institut Teknologi Nasional Yogyakarta
  • Iman Pradana A. Assagaf Teknik Manufaktur Industri, Politeknik ATI Makasar
Keywords: Natural Frequency, Ansys, Finite Element Method.


Wheels are one of the automotive vehicle parts that continue to see design advancement and different shapes. There are two different kinds of alloy wheels in use by the general public: steel alloy wheels and aluminum alloy wheels. The spokes of these aluminum alloy wheels typically rupture due to force and center that exceed the maximum stress value, or the rim of the rim is damaged due to plastic deformation. Using the ANSYS Workbench software, the natural frequency shape of the ring 16 rim was compared to its normal shape to identify how the rim would flex in the event of a failure and to make it simpler for designers to examine the design. The ring 16 wheel modeling material used in this study is aluminum alloy. ANSYS Workbench is used to analyze vibration modes. The natural frequencies of the 16 ring wheels as determined by analysis are 207.68Hz, 209.1Hz, 347.37Hz, 348.37Hz, 416.45Hz, 443.42Hz, 860.36Hz, 863.1Hz, 1166.7Hz, and 1168.8Hz. With a rise of 416.94Hz, the sixth vibration mode to the seventh order has the biggest frequency increase. The 16 ring wheels' maximum deformation measurements are 16, 592, 16,593, 21,887, 21,965, 11, 388, 11, 48, 22.231, 22.445, 13,731 and 13, 537 millimeters.


Fahd Riyal Pris, Budhi M Suyitno, and Amin Suhadi, “Analisis Kekuatan Velg Aluminium Alloy 17 Inc Dari Berbagai Desain Menggunakan Metode Finite Element Analysis (Fea).,” Teknobiz J. Ilm. Progr. Stud. Magister Tek. Mesin, vol. 9, no. 2, pp. 33–39, 2019, doi: 10.35814/teknobiz.v9i2.558.


M. Bahri and A. S. Pramono, “Analisa Kekuatan Velg Mobil Penumpang pada Simulasi Pengujian Dynamic Radial Fatigue dengan Metode Elemen Hingga,” J. Tek. Its, vol. 4, no. 1, pp. 1–5, 2015.

D. A. Bhargav S and A. S. Jayaram, “Design and Analysis of Alloy Wheel for Multi-Purpose Vehicle,” Int. Res. J. Eng. Technol., no. October, pp. 3–7, 2018, [Online]. Available:

M. Dalimunthe, H, R, Syam, B, Sabri,M, Isranuri, I, “Edisi Cetak Jurnal Dinamis , Maret 2016 ( ISSN : 0216-7492 ) Edisi Cetak Jurnal Dinamis , Maret 2016 ( ISSN : 0216-7492 ),” J. Din., vol. 4, no. 1, pp. 45–53, 2016.

A. B. Prasetiyo and K. A. Sekarjati, “Finite Element Simulation of Power Weeder Machine Frame,” Indones. J. Comput. Eng. Des., vol. 4, no. 2, pp. 26–34, 2022, doi:

A. B. Prasetiyo and K. A. Sekarjati, “Analisis Struktur Desain Pisau Pengupas Tempurung Kelapa,” in Seminar Nasional Riset & Inovasi Teknologi, 2022, pp. 417–423.

W. Anggono, I. Pratikto, H. Suryanto, S. Hadi, and Suprihanto, “DECIDING THE OPTIMUM SPOKE ANGLE OF MOTORCYCLE CAST WHEEL USING FINITE ELEMENT APLICATION AND PUGH’S CONCEPT SELECTION METHOD Case study: Sustainable Product Development for Motorcycle Cast Wheel,” in Seminar Nasional Teknik Mesin XIII, Jun. 2013, pp. 1–7.

L. Ari, N. Wibawa, B. Uji, P. Antariksa, and I. Nasional, “Analisis Frekuensi Natural Rangka Main Landing Gear Pesawat UAV Menggunakan Ansys Workbench,” J. Mesin Nusant., vol. 5, no. 1, pp. 65–73, 2022, doi: 10.29407/jmn.v5i1.17580.

C. Jinlong and S. Zhenqian, “Finite Element Analysis of Static and Dynamic Characteristics of Elevator Desk Structure Based on ANSYS Workbench,” J. Eng. Mech. Mach., vol. 3, pp. 14–20, 2018, doi:

B. Zheng, J. Zhang, and Y. Yao, “Finite element analysis of the piston based on ANSYS,” Proc. 2019 IEEE 3rd Inf. Technol. Networking, Electron. Autom. Control Conf. ITNEC 2019, vol. 3, no. Itnec, pp. 1908–1911, 2019, doi: 10.1109/ITNEC.2019.8729409.

A. B. Prasetiyo, K. A. Sekarjati, and S. Haryo, “Design And Analysis of The Effect of Variation Ofcompression Force on Allen Key Using Finite Element Analysis Method,” SJME Kinemat., vol. 7, no. 1, pp. 39–52, 2022, doi: 10.20527/sjmekinematika.v7i.

A. B. Prasetiyo and F. Fauzun, “Numerical study of effect of cooling channel configuration and size on the product cooling effectiveness in the plastic injection molding,” MATEC Web Conf., vol. 197, pp. 8–11, 2018, doi: 10.1051/matecconf/201819708019.

L. A. N. Wibawa, “Desain Dan Analisis Kekuatan Dudukan (Bracket) Ac Outdoor Menggunakan Metode Elemen Hingga,” J. Crankshaft, vol. 2, no. 1, pp. 19–24, 2019, doi: 10.24176/crankshaft.v2i1.2688.

M. M. Doustdar and H. Kazemi, “Effects of fixed and dynamic mesh methods on simulation of stepped planing craft,” J. Ocean Eng. Sci., vol. 4, no. 1, pp. 33–48, 2019, doi: 10.1016/j.joes.2018.12.005.

M. Sosnowski, “Computational domain discretization in numerical analysis of flow within granular materials,” EPJ Web Conf., vol. 180, pp. 1–7, 2018, doi: 10.1051/epjconf/201817002095.

M. García Pérez and E. Vakkilainen, “A comparison of turbulence models and two and three dimensional meshes for unsteady CFD ash deposition tools,” Fuel, vol. 237, no. September 2018, pp. 806–811, 2019, doi: 10.1016/j.fuel.2018.10.066.

A. B. Prasetiyo, A. A. Azmi, D. S. Pamuji, and R. Yaqin, “Pengaruh Perbedaan Mesh Terstruktur dan Mesh Tidak Terstruktur Pada Simulasi Sistem Pendinginan Mold Injeksi Produk Plastik,” Pros. Nas. Rekayasa Teknol. Ind. dan Inf. XIV Tahun 2019, vol. 2019, no. November, pp. 400–406, 2019.

M. Sosnowski, J. Krzywanski, and R. Scurek, “A fuzzy logic approach for the reduction of mesh-induced error in CFD analysis: A case study of an impinging jet,” Entropy, vol. 21, no. 11, 2019, doi: 10.3390/e21111047.

M. Sosnowski, J. Krzywanski, K. Grabowska, and R. Gnatowska, “Polyhedral meshing in numerical analysis of conjugate heat transfer,” EPJ Web Conf., vol. 180, no. March 2019, p. 02096, 2018, doi: 10.1051/epjconf/201818002096.

Vutton D. V., Fundamentals of Finite Element Analysis, 1st ed. McGraw-Hill Science/Engineering/Math, 2003.

H. Chen, X. Zhou, Z. Feng, and S. J. Cao, “Application of polyhedral meshing strategy in indoor environment simulation: Model accuracy and computing time,” Indoor Built Environ., vol. 0, no. 0, pp. 1–13, 2021, doi: 10.1177/1420326X211027620.

F. T. Al-Maliky and M. J. Albermani, “Structural Analysis of Kufasat Using Ansys Program,” Artif. Satell., vol. 53, no. 1, pp. 29–35, 2018, doi: 10.2478/arsa-2018-0003.

P. Ofrial, M, T, A; Noerochim, L ;Hidayat, M, I, “Analisis Numerikal Frekuensi Natural Pada Poros Low Pressure Boiler Feed Pump PT.PJB UP Gresik,” J. Tek. ITS, vol. 6, no. 1, pp. F1–F6, 2017, doi:

How to Cite
Bagus Prasetiyo, A., Kartinasari Ayuhikmatin Sekarjati, Sutrisna and Iman Pradana A. Assagaf (2022) “Analisis Frekuensi Natural Velg Ring 16 Menggunakan Finite Element Method”, ReTII, pp. 354-359. Available at: // (Accessed: 18July2024).