Increased Strength of Sintered Body Hydroxyapatite (HA) with the Addition of Silica as a Reinforcing Material

  • Rahmat Hidayat Institut Teknologi Padang
  • Ade Indra Institut Teknologi Nasional Yogyakarta
  • Subardi Institut Teknologi Nasional Yogyakarta
Keywords: Hydroxyapatite, silica, pressureles, physical properties, compressive strength.

Abstract

Sintered body hydroxyapatite (HA) is in the form of pellets with the addition of silica as a reinforcing material. The using the average particle size of HA powder is 112.7 μm and the average particle size of silica powder is 11.11 μm. It has been prepared with a HA-Silica ratio of 97:3, 94:6, 88:12, 85:15, 82:18, % by weight. Each ratio of HA-Silica was added with liquid polyvinyl alcohol (PVA) as a binder (added ethanol as a solvent). The mixture was dried at room temperature for 48 hours to remove the ethanol. The lumps of the mixture were mashed again using a rotary drum for 2 hours with a ceramic ball inside. Green body is made by uniaxial pressing method at a pressure of 100 MPa. The sintering process was carried out with a temperature of 1200℃, holding time 2 hours, heating rate 3℃/minute, cooling rate 3℃/minute until temperature 800℃ and 5℃/minute until temperature 300℃. The physical characteristics of HA sintered body were determined by linear shrinkage, density and relative density testing and compressive strength testing to determine the mechanical properties. The results of the linear shrinkage test were indicated by a weight loss of 4.62% and an increase in diameter shrinkage of 7.68%. The increased product density was indicated by the results of the density and relative density test, which increased in the value of density 25.9% and relative density of 0.73%. Changes in physical properties are indicated by the increase in the compressive strength test value of 73.93 MPa.

References

[1] D. Djuhana, M. Mulyadi, and S. Sunardi, “Efek Aditif SiO2 Terhadap Suhu Sintering Keramik Alumina dan Karakteristiknya,” Pist. J. Tech. Eng., vol. 2, no. 1, pp. 22–26, 2019, doi: 10.32493/pjte.v2i1.3224.
[2] A. Indra, R. Firdaus, I. H. Mulyadi, J. Affi, and Gunawarman, “Enhancing the physical and mechanical properties of pellet-shaped hydroxyapatite by controlling micron- and nano-sized powder ratios,” Ceram. Int., vol. 46, no. 10, pp. 15882–15888, 2020, doi: 10.1016/j.ceramint.2020.03.136.
[3] S. E. Cahyaningrum, N. Herdyastuty, D. Supangat, and B. Devina, “Sintesis Hidroksiapatit Dari Cangkang Telur Menggunakan Metode Pengendapan Basah,” Pros. Semin. Nas. Kim. UNY, pp. 367–370, 2017.
[4] A. Indra, Gunawarman, J. Affi, I. H. Mulyadi, and Y. Wiyanto, “Physical and mechanical properties of hydroxyapatite ceramics with a mixture of micron and nano-sized powders: Optimising the sintering temperatures,” Ceram. - Silikaty, vol. 65, no. 3, pp. 224–234, 2021, doi: 10.13168/cs.2021.0022.
[5] K. Dahlan and S. U. Dewi, “Pengaruh Sintering dan Penambahan Senyawa Karbonat pada Sintesis Senyawa Kalsium Fosfat,” pp. 153–158, 2013.
[6] S. Rusdiana and D. Shinta, “Characterization Of Hydroxyapatite Which is synthesisted From Snakehead Fish (Channa striata) Scales With Variation Of Calsination Temperatures,” vol. 4, no. 1, pp. 1–5, 2022.
[7] A. D. Wuntu, H. S. . Koleangan, and N. L. Wuntu, “Adsorpsi Metilen Biru Pada Hidroksiapatit Dari Tulang Ikan Kakap Merah,” J. Ilm. Sains, vol. 20, no. 1, p. 6, 2020, doi: 10.35799/jis.20.1.2020.25758.
[8] S. Oktaviyani and dan Fitri Afriani, “Perancah Tulang Berbasis Komposit Hidroksiapatit/Silika Melalui Metode 3D-Printing: Sebuah Kajian Naratif,” JoP, vol. 6, no. 1, pp. 57–66, 2020.
[9] S. Sulastri and S. Kristianingrum, “Berbagai Macam Senyawa Silika : Sintesis, Karakterisasi dan Pemanfaatan,” Pros. Semin. Nas. Penelitian, Pendidik. dan Penerapan MIPA, pp. 211–216, 2010.
[10] S. Silahooy, “Analisis Serbuk Silika Amorf (SiO2) Berbahan Dasar Pasir,” Sci. Map J., vol. 2, no. 2, pp. 75–78, 2020, [Online]. Available: https://ojs3.unpatti.ac.id/index.php/sciencemap/article/view/3818
[11] A. Asril and J. Rahayuningsih, “Sintesis Hidroksiapatit dari Tulang Ikan Patin melalui Metode Presipitasi,” ALKIMIA J. Ilmu Kim. dan Terap., vol. 4, no. 1, pp. 12–16, 2020, doi: 10.19109/alkimia.v4i1.4633.
[12] Agusriyadin, F. Anindita, Alimuddin, and L. A. Kadir, “Kualitas Hidroksiapatit dan Diammonium Hidrogen Fosfat Sebagai Bahan Pembuatan Bonegraft,” Saintifik, vol. 8, no. 1, pp. 85–90, 2022, doi: 10.31605/saintifik.v8i1.346.
[13] T. Mujiyanti, “Analisis Struktur Kristal Kalsium Hidroksida dari Cangkang Bekicot sebagai Kandidat RAW Material Hidroksiapatit Berbasis Bahan Alam 1,” vol. 6, no. November, pp. 890–895, 2021.
[14] R. Rahmaniah, “SINTESIS DAN KARAKTERISASI HIDROKSIAPATIT DARI CANGKANG KERANG DARAH (Anadara granosa) SEBAGAI BAHAN BAKU SEMEN TAMBAL GIGI,” Teknosains Media Inf. Sains Dan Teknol., vol. 13, no. 1, pp. 27–32, 2019, doi: 10.24252/teknosains.v13i1.7832.
[15] L. H. Huan, A. Muchtar, M. Razali, and C. H. Chin, “Sinteran Hidroksiapatit dalam Atmosfera Nitrogen untuk Peningkatan Sifat Sinteran Hidroksiapatit dalam Atmosfera Nitrogen untuk Peningkatan Sifat Mikrokekerasan,” no. March 2019, 2017, doi: 10.17576/jsm-2017-4609-36.
[16] W. Gita Novian Hermana, “Pengaruh Komposisi Cu dan Variasi Tekanan Kompaksi Terhadap Densitas dan Kekerasan pada Komposit W-Cu untuk Proyektil Peluru dengan Proses Metalurgi Serbuk,” J. Tek. Pomits, vol. 3, no. 1, pp. 96–101, 2014.
[17] A. Indra, “Pengembangan Proses Manufaktur Bone Scaffold Berbasis Bio-Keramik Hidroksiapatit Program Studi Doktor Teknik Mesin Pengembangan Proses Manufaktur Bone Scaffold Berbasis Bio-Keramik Hidroksiapatit,” 2021.
[18] A. Indriani1, M. S. Ir. Aminatun, and M. S. Drs. Siswanto, “Upaya Meningkatkan Kuat Tekan Komposit Ha-Kitosan Sebagai Kandidat Aplikasi Implan Tulang Kortikal,” 2014.
[19] E. Maryani, S. C. Kurniasih, N. Sofiyaningsih, and B. Priyanto, “Penyiapan Komposit Hidroksiapatit - Zirkonia Sebagai Bahan Biokeramik The Preparation of Hydroxyapatite – Zirconia Composites as Bioceramic Materials,” vol. 27, no. 1, pp. 40–50, 2018.
[20] H. Xing et al., “Effect of particle size distribution on the preparation of ZTA ceramic paste applying for stereolithography 3D printing,” Powder Technol., vol. 359, pp. 314–322, 2020, doi: 10.1016/j.powtec.2019.09.066.
[21] D. Sofia, D. Barletta, and M. Poletto, “Laser sintering process of ceramic powders: The effect of particle size on the mechanical properties of sintered layers,” Addit. Manuf., vol. 23, pp. 215–224, 2018, doi: 10.1016/j.addma.2018.08.012.
[22] H. Wu et al., “Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography,” Ceram. Int., vol. 42, no. 15, pp. 17290–17294, 2016, doi: 10.1016/j.ceramint.2016.08.024.
[23] C. Sun et al., “Effect of particle size gradation on the performance of glass-ceramic 3D printing process,” Ceram. Int., vol. 43, no. 1, pp. 578–584, 2017, doi: 10.1016/j.ceramint.2016.09.197.
[24] Y. Luo, S. Ma, C. Liu, Z. Zhao, S. Zheng, and X. Wang, “Effect of particle size and alkali activation on coal fly ash and their role in sintered ceramic tiles,” J. Eur. Ceram. Soc., vol. 37, no. 4, pp. 1847–1856, 2017, doi: 10.1016/j.jeurceramsoc.2016.11.032.
[25] F. Niu, D. Wu, F. Lu, G. Liu, G. Ma, and Z. Jia, “Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping,” Ceram. Int., vol. 44, no. 12, pp. 14303–14310, 2018, doi: 10.1016/j.ceramint.2018.05.036.
[26] K. Miyake, Y. Hirata, T. Shimonosono, and S. Sameshima, “The effect of particle shape on sintering behavior and compressive strength of porous alumina,” Materials (Basel)., vol. 11, no. 7, 2018, doi: 10.3390/ma11071137.
[27] J. Ding, Q. Liu, B. Zhang, F. Ye, and Y. Gao, “Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity,” J. Alloys Compd., vol. 831, p. 154737, 2020, doi: 10.1016/j.jallcom.2020.154737.
[28] M. Weiß, P. Sälzler, N. Willenbacher, and E. Koos, “3D-Printed lightweight ceramics using capillary suspensions with incorporated nanoparticles,” J. Eur. Ceram. Soc., vol. 40, no. 8, pp. 3140–3147, 2020, doi: 10.1016/j.jeurceramsoc.2020.02.055.
Published
2022-11-11
How to Cite
Hidayat, R., Ade Indra and Subardi (2022) “Increased Strength of Sintered Body Hydroxyapatite (HA) with the Addition of Silica as a Reinforcing Material”, ReTII, pp. 360-366. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/3658 (Accessed: 25April2024).