Implementation of the Support Vector Machine Method in Sentiment Analysis of Public Opinion towards the 2020 Regional Election on Twitter Social Media

  • J.B. Budi Darmawan Universitas Sanata Dharma
  • Martin Paramarta
Keywords: classification, regional elections, sentiment analysis, support vector machine, tweet

Abstract

The 2020 regional elections were postponed for several months because of the COVID-19 pandemic, until finally set to be held on December 9, 2020. Many people have opinions about the pros and cons of holding regional elections during the COVID-19 pandemic on social media, especially Twitter. This research aims to determine the number of positive and negative sentiments and the performance of the Support Vector Machine method in classifying tweet sentiments. The research data was sourced from tweets with the keyword "Pilkada 2020" which amounted to 6037 tweets. The data will be labeled positive and negative sentiment polarity automatically.    The test results showed as many as 4864 data with positive sentiment and 1173 other data with negative sentiment. In addition, the test results in this research show that the Support Vector Machine method has a fairly good performance in classifying tweet sentiment with an average accuracy result of 87.94%.

References

[1] J. R. A. Sandi and . S., “Fenomena Pengawasan Pemilihan Kepala Daerah di Kalimantan Tengah Masa Pandemi Covid-19,” Jurnal Politik Pemerintahan Dharma Praja, vol. 13, no. 1, pp. 1–13, Jun. 2020, doi: 10.33701/jppdp.v13i1.1072.
[2] A. Muzaki and A. Witanti, “SENTIMEN ANALISIS MASYARAKAT DI TWITTER TERHADAP PILKADA 2020 DITENGAH PANDEMIC COVID-19 DENGAN METODE NAÏVE BAYES CLASSIFIER,” Jurnal Teknik Informatika (Jutif), vol. 2, no. 2, pp. 101–107, Mar. 2021, doi: 10.20884/1.jutif.2021.2.2.51.
[3] Luthfanida, “ANALISIS SENTIMEN DATA TWITTER MENGGUNAKAN METODE NAIVE BAYES DAN SUPPORT VECTOR MACHINE (SVM) TENTANG PRESIDEN JOKOWI 3 PERIODE,” Journal of Information Technology Research, vol. 3, Jun. 2022.
[4] V. A. Flores, P. A. Permatasari, and L. Jasa, “Penerapan Web Scraping Sebagai Media Pencarian dan Menyimpan Artikel Ilmiah Secara Otomatis Berdasarkan Keyword,” Majalah Ilmiah Teknologi Elektro, vol. 19, no. 2, p. 157, Dec. 2020, doi: 10.24843/mite.2020.v19i02.p06.
[5] C. Hutto and E. Gilbert, “VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text,” Proceedings of the International AAAI Conference on Web and Social Media, vol. 8, no. 1, pp. 216–225, May 2014, doi: 10.1609/icwsm.v8i1.14550.
[6] A. Shiri, Introduction to Modern Information Retrieval (2nd edition). Emerald Group Publishing Limited, 2004. doi: 10.1108/00242530410565256.
[7] A. Hutapea and M. Tanzil Furqon, “Penerapan Algoritme Modified K-Nearest Neighbour Pada Pengklasifikasian Penyakit Kejiwaan Skizofrenia,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 2, no. 10, pp. 3957–3961, 2018, [Online]. Available: http://j-ptiik.ub.ac.id
[8] S. Jansen, Hands-on machine learning for algorithmic trading : design and implement investment strategies based on smart algorithms that learn from data using Python. Packt Publishing, 2018.
[9] J. Asian, H. E. Williams, and S. M. M. Tahaghoghi, “Stemming Indonesian,” in Conferences in Research and Practice in Information Technology Series, 2005, pp. 307–314. doi: 10.1145/1316457.1316459.
[10] J. Han, M. Kamber, and J. Pei, Data Mining. Concepts and Techniques, 3rd Edition (The Morgan Kaufmann Series in Data Management Systems). 2011.
[11] S. Ghoneim, “Accuracy, Recall, Precision, F-Score & Specificity, which to optimize on?,” Towards Data Science, Apr. 02, 2018. https://towardsdatascience.com/accuracy-recall-precision-f-score-specificity-which-to-optimize-on-867d3f11124
Published
2023-11-06
How to Cite
Darmawan, J. B. and Paramarta, M. (2023) “Implementation of the Support Vector Machine Method in Sentiment Analysis of Public Opinion towards the 2020 Regional Election on Twitter Social Media”, ReTII, 18(1), pp. 836-841. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/4599 (Accessed: 23November2024).