Karakterisasi Isoterm Adsorpsi Fe dan Mn Pada Sampel Air Asam Tambang

Authors

  • Mycelia Paradise UPN Veteran Yogyakarta

Keywords:

Adsorpsi, Fe, Isoterm, Mn

Abstract

This study aimed to analyze the adsorption pattern of heavy metals. Adsorption tests were conducted on Fe and Mn in Acid Mine Drainage (AAT) samples containing Fe 13.006 mg/L and Mn 30.590 mg/L at various time and adsorbent mass variations. The experimental results showed that the composite mass of 5 grams could reduce the iron concentration to 99.35%, but the adsorbent mass of 2.5 grams is more efficient because it succeeded in reducing the iron concentration to 0.1484 mg/L within 30 minutes, thus meeting the quality standards set. The adsorption pattern in this study is described through the adsorption isotherm curve which has a correlation coefficient (R2) close to 1. Based on the analysis results, Fe adsorption followed the Langmuir isotherm pattern with R2 = 0.998, while Mn adsorption followed the Langmuir isotherm pattern with R2 = 0.997. The analysis showed that the correlation coefficient in Langmuir isotherm was higher than Freundlich isotherm for both Fe and Mn, indicating a very strong level of correlation in the Langmuir model. The adsorption mechanism observed in this study is characterized as chemical adsorption. The adsorbent exhibits an adsorption capacity of 1.286 mg/g for Fe and 1.031 mg/g for Mn under the optimal conditions of a 2.5-gram mass of adsorbent for 30 minutes.

References

[1] Indra, H., Lepong, Y., Gunawan, F., & Abfertiawan, M. S. (2014). Seminar Air Asam Tambang ke-5 dan Pascatambang di Indonesia Bandung. 28, 1–9.
[2] Kerndorff, H., & Schnitzer, M. (1980). Sorption of metals on humic acid. Geochimica et Cosmochimica Acta, 44(11), 1701–1708. https://doi.org/10.1016/0016-7037(80)90221-5
[3] Musso, T. B., Parolo, M. E., Pettinari, G., & Francisca, F. M. (2014). Cu(II) and Zn(II) adsorption capacity of three different clay liner materials. Journal of Environmental Management, 146, 50–58. https://doi.org/10.1016/j.jenvman.2014.07.026
[4] Nursanto, E., & Pradise, M. (2021). Adsorption of Iron (Fe) Heavy Metal in Acid Mine Drainage from Coal Mining. RSF Conference Series: Engineering and Technology, 1(1), 500–509. https://doi.org/10.31098/cset.v1i1.421
[5] Pambayun, G. S., Yulianto, R. Y. E., Rachimoellah, M., & Putri, E. M. M. (2013). Pembuatan karbon aktif dari arang tempurung kelapa dengan aktivator ZnCl2 dan Na2CO3 sebagai adsorben untuk mengurangi kadar fenol dalam air limbah. Jurnal Teknik Pomits, 2(1), 116–120. https://doi.org/10.12962/j23373539.v2i1.2437
[6] Paradise, M., Nursanto, E., Nurkhamim, & Haq, S. R. (2022). Use of Claystone, Zeolite, and Activated Carbon As a Composite To Remove Heavy Metals From Acid Mine Drainage in Coal Mining. ASEAN Engineering Journal, 12(2), 75–81. https://doi.org/10.11113/aej.V12.16982
[7] Rahmawati, A., & Santoso, S. J. (2013). STUDI ADSORPSI LOGAM Pb(II) DAN Cd(II) PADA ASAM HUMAT DALAM MEDIUM AIR. Alchemy, 2(1). https://doi.org/10.18860/al.v0i0.2296
[8] Renu, Agarwal, M., & Singh, K. (2017). Heavy metal removal from wastewater using various adsorbents: A review. Journal of Water Reuse and Desalination, 7(4), 387–419. https://doi.org/10.2166/wrd.2016.104
[9] Subba Reddy, Y., Maria Magdalane, C., Kaviyarasu, K., Mola, G. T., Kennedy, J., & Maaza, M. (2018). Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. Journal of Physics and Chemistry of Solids, 123, 43–51. https://doi.org/10.1016/j.jpcs.2018.07.009
[10] Suyanta and Catri, C. R. (2016). ( the Effectiveness of Natural Zeolite As Metal Absorbent. 21(Ii), 87–97.

Downloads

Published

2023-11-11

How to Cite

Mycelia Paradise (2023) “Karakterisasi Isoterm Adsorpsi Fe dan Mn Pada Sampel Air Asam Tambang ”, ReTII, 18(1), pp. 988–993. Available at: https://journal.itny.ac.id/index.php/ReTII/article/view/4640 (Accessed: 2April2025).