Efektifitas Strategi Pengendalian Wake-effect dalam Memaksimalkan Produksi Daya Ladang Turbin Angin

  • Kurniawan Institut Teknologi Nasional Yogyakarta
  • Hasanudin Institut Teknologi Nasional Yogyakarta
  • Agus Dwiyanto Institut Teknologi Nasional Yogyakarta
  • Rivanda Tyaksa Putra Institut Teknologi Nasional Yogyakarta
Keywords: Wake-effect, Yaw-offset, pitch, Tip-speed-ratio, Wind Turbine Farm

Abstract

The wake effect is an aerodynamic interaction between turbines in a wind farm, where wind flow is blocked by turbines ahead, leading to a total power loss of 10-25%. The wake effect can be controlled by adjusting the yaw-offset angle, pitch angle, tip-speed ratio, or a combination of these strategies. This research aims to compare and determine the most effective control strategy to maximize total wind farm power production. The method involves analyzing and simulating various control strategies to reduce the wake effect. A Gaussian wake-effect model is used to simulate wind flow patterns, turbine interactions, and total wind farm power. Data is generated from simulations under wind speeds of 3 m/s and 10 m/s, and turbine spacing of 7D and 12D. Results show that total wind farm power production increased by 11.41%, 2.21%, 0.00%, and 12.70% for yaw-offset angle, pitch angle, tip-speed ratio, and a combination of the three, respectively. The study identifies the combination of these parameters as the most effective strategy for reducing the wake effect. Proper wake-effect control can significantly boost total wind farm power production, with broader potential applications for commercial wind farms in the future.

References

R. K. Balakrishnan dan S. Hur, "Maximization of the Power Production of an Offshore Wind Farm," Applied Sciences, vol. 12, no. 8, p. 4013, 2022. doi: 10.3390/app12084013

D. Hendrawati, A. Soeprijanto, dan M. Ashari, "Turbine Wind Placement with Staggered Layout as a Strategy to Maximize Annual Energy Production in Onshore Wind Farms," International Journal of Energy Economics and Policy (IJEEP), vol. 9, no. 2, pp. 334-340, 2019. doi: 10.32479/ijeep.7437

B. P. Rak dan R. B. S. Pereira, "Impact of the Wake Deficit Model on Wind Farm Yield: A Study of Yaw-Based Control Optimization," Journal of Wind Engineering and Industrial Aerodynamics, vol. 220, p. 104827, 2022. doi: 10.1016/j.jweia.2021.104827

S. Yang, X. Deng, Z. Ti, B. Yan, dan Q. Yang, "Cooperative Yaw Control of Wind Farm Using a Double-Layer Machine Learning Framework," Renewable Energy, vol. 193, pp. 519–537, 2022. doi: 10.1016/j.renene.2022.04.104

C. L. Archer, et al., "Review and Evaluation of Wake Loss Models for Wind Energy Applications," Applied Energy, vol. 226, pp. 1187–1207, 2018. doi:10.1016/j.apenergy.2018.05.085

V. R. Padullaparthi, S. Nagarathinam, A. Vasan, V. Menon, dan D. Sudarsanam, "FALCON- FArm Level CONtrol for Wind Turbines Using Multi-Agent Deep Reinforcement Learning," Renewable Energy, vol. 181, pp. 445-456, 2022. doi: 10.1016/j.renene.2021.09.023

J. W. Lin, W. J. Zhu, dan W. Z. Shen, "New Engineering Wake Model for Wind Farm Applications," Renewable Energy, vol. 198, pp. 1354-1363, 2022. doi: 10.1016/j.renene.2022.08.116

J. Kuo, K. Pan, N. Li, dan H. Shen, "Wind Farm Yaw Optimization via Random Search Algorithm," Energies, vol. 13, no. 4, p. 865, 2020. doi:10.3390/en13040865

J. Sun, et al., "Quantitative Evaluation of Yaw-Misalignment and Aerodynamic Wake Induced Fatigue Loads of Offshore Wind Turbines," Renewable Energy, vol. 199, pp. 71–86, 2022. doi: 10.1016/j.renene.2022.08.137

R. Nash, R. Nouri, dan V. B. H. Ahmad, "Wind Turbine Wake Control Strategies: A Review and Concept Proposal," Energy Conversion and Management, vol. 245, p. 114581, 2021. doi: 10.1016/j.enconman.2021.114581

L. Zhao, L. Xue, Z. Li, J. Wang, Z. Yang, dan Y. Xue, "Progress on Offshore Wind Farm Dynamic Wake Management for Energy," Journal of Marine Science and Engineering, vol. 10, no. 10, p. 1395, 2022. doi: 10.3390/jmse10101395

S. Kurniawan, A. Triwiyatno, dan I. Setiawan, "Optimization of Wind Farm Yaw Offset Angle using Online Genetic Algorithm with a Modified Elitism Strategy to Maximize Power Production," Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, vol. 9, no. 1, pp. 185-199, 2023. doi:10.26555/jiteki.v9i1.25747

C. R. Shapiro, D. F. Gayme, dan C. Meneveau, "Modelling yawed Wind Turbine Wakes: A Lifting Line Approach," Journal of Fluid Mechanics, vol. 841, no. 12, p. R1, 2018. doi:10.1017/jfm.2018.75

R. Jahantigh, S. M. Esmailifar, dan S. A. Sina, "Wind Farm Control and Power Curve Optimization using Induction-Based Wake Model," Measurement and Control (United Kingdom), vol. 56, no. 9-10, pp. 1751-1763, 2023, doi: 10.1177/00202940231180624

A. G. Barcos dan F. P. Agel, "Enhancing Wind Farm Performance through Axial Induction and Tilt Control: Insights from Wind Tunnel Experiments," Energies, vol. 17, no. 1, pp. 0-20, 2024. doi:10.3390/en17010203

Published
2024-11-13
How to Cite
Kurniawan, Hasanudin, Dwiyanto, A. and Tyaksa Putra, R. (2024) “Efektifitas Strategi Pengendalian Wake-effect dalam Memaksimalkan Produksi Daya Ladang Turbin Angin”, ReTII, pp. 206 -. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/5461 (Accessed: 17January2025).