Desain Sistem Pembangkit Listrik Tenaga Surya Off-Grid untuk Catu Daya Sistem Refrigerasi

  • Andriyanto Setyawan Politeknik Negeri Bandung
  • Tandi Sutandi Politeknik Negeri Bandung
  • Markus Markus Politeknik Negeri Bandung


This paper discusses the use of solar energy that is easily found in Indonesia due to its geographical location in tropical area. In this research, the solar energy was utilized to supply energy for the operation of refrigeration machine that highly required in Indonesia. This research employed solar panels with a capacity of 200 WP, solar charge controller, battery, and inverter, to supply energy for a mini refrigerator. The average power resulted from the experiment is 106.4 Watt with the average solar irradiation of 352 W/m2. The energy for the charging of the battery is 396 Wh. This is sufficient for supplying the refrigerating machine for 3.3 hours if the machine runs continuously. If the machine has an on/off cycle with the utilization factor of 40%, the energy could run the machine for 8.25 hours.


American Society of Heating, Refrigerating, and Air Conditioning Engineers, ASHRAE Handbook of Applications, ASHRAE, Atanta, 2015.

Jacob, G. Solar resources in Indonesia. Solar Energy Technology. Training Course on Renewable Energy Part II – MEMR CASINDO, 2010.

Rumbayan, M., K. Nagasaka, 2011. Estimation of Daily Global Solar Irradiation in Indonesia with Artificial Neural Network (ANN) Method. Proceeding of the International Conference on Advanced Science, Engineering and Information Technology 2011.

Rumbayan, M., A. Abudureyimu, K. Nagasaka. Mapping of solar energy potential in Indonesia using artificial neural network and geographical information system. Renewable and Sustainable Energy Reviews. 2012; 16: 1437– 1449

Prastawa, A., R. Dalimi, A. Rezavidi. Single Hidden Layer Artificial Neural Network Technique for Solar Energy Potential Prediction in Indonesia. Isesco Journal of Science and Technology Vol. 10 - No 17 - May 2014 (2-10).

Fong, K.F., Lee, C.K., Chow, T.T., Lin, Z., Chan, L.S. Solar hybrid air-conditioning system for high temperature cooling in subtropical city. Renewable Energy. 2010; 35: 2439–2451.

Bilgili, M., 2011. Hourly simulation and performance of solar electric-vapor compression refrigeration system. Solar Energy. 2011; 85: 2720–2731.

Singh, G.K., 2013. Solar power generation by PV (photovoltaic) technology: A review. Energy. 2013; 53: 1-13

European Photovoltaic Industry Association, Global Market Outlook for Solar Power / 2015 - 2019

Aguilar, F.J., S. Aledo, P.V. Quiles. Experimental analysis of an air conditioner powered by photovoltaic energy and supported by the grid, Applied Thermal Engineering. 2017; doi: j.applthermaleng. 2017.05.123

Infante Ferreira C., Kim D.-S. Techno-economic review of solar cooling technologies based on location-specific data. International Journal of Refrigeration. 2014; 39:23-37. doi: j.ijrefrig.2013.09.033.

R. Opoku, S. Anane, I.A. Edwin, M.S. Adaramola, R. Seidu, Comparative techno-economic assessment of a converted DC refrigerator and a conventional AC refrigerator both powered by solar PV, International Journal of Refrigeration. 2016; 10.1016/j.ijrefrig.2016.08.014

Kim DS, Infante-Ferreira CA. 2008. Solar refrigeration options – a state-of-the-art review. International Journal of Refrigeration. 2008; 31:3–15

How to Cite
Setyawan, A., Sutandi, T. and Markus, M. (2018) “Desain Sistem Pembangkit Listrik Tenaga Surya Off-Grid untuk Catu Daya Sistem Refrigerasi”, ReTII. Available at: // (Accessed: 22June2024).