Analisis Sentimen Ulasan Aplikasi Gojek Di Google Play Store Menggunakan Multinomial Naïve Bayes
Abstract
The development of technology in Indonesia has facilitated various human activities, including in the field of transportation through online-based services such as Gojek, a decacorn company that provides various transportation services. Gojek has changed the way Indonesian people move around in urban areas. Understanding user sentiment towards the Gojek application, especially through reviews on the Google Play Store, is key to improving and improving the services offered. This study aims to evaluate the performance of sentiment analysis on 4746 Gojek application reviews on the Google Play Store using the Naive Bayes algorithm. The methods used include data translation processes, labeling using Vader, text preprocessing, word weighting with TF-IDF, data balancing with SMOTE, and model testing using K-fold cross validation. Sentiment classification is done using Multinomial Naive Bayes, and model evaluation using a confusion matrix. The research results show that testing with K-fold cross validation k = 11 and alpha = 0.001 produces the highest accuracy of 92.25%, precision of 92.16%, recall of 89.71%, and F1-score of 90.42%.
References
Zhang W, Gao F. An Improvement To Naive Bayes For Text Classification, Procedia Engineering, Vol. 15, pp. 2160–2164, 2011.
Chen J, Huang H, Tian S, Qu Y. Feature Selection For Text Classification With Naïve Bayes, Expert Systems with Applications, 2009; Vol. 36, No. 3, pp. 5432–5435.
Asri Y, Suliyanti WN, Kuswardani D, Fajri M. Pelabelan Otomatis Lexicon Vader dan Klasifikasi Naive Bayes Dalam Menganalisis Sentimen Data Ulasan PLN Mobile. Petir, 2022.
Agustina N, Citra DH, Purnama W, Nisa C, Kurnia AR. Implementasi Algoritma Naive Bayes untuk Analisis Sentimen Ulasan Shopee pada Google Play Store: The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews On Google Play Store, MALCOM: Indonesian Journal of Machine Learning and Computer Science, 2022; Vol. 2, No. 1, pp. 47–54.
Husada HC, Paramita AS. Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM), Teknika, 2021; Vol. 10, No. 1, pp. 18–26.
Jansen S. Hands-On Machine Learning for Algorithmic Trading: Design and implement investment strategies based on smart algorithms that learn from data using Python. Packt Publishing Ltd, 2018.
Siringoringo R, Jaya IK. Ensemble Learning Dengan Metode Smotebagging Pada Klasifikasi Data Tidak Seimbang, Journal Information System Development (ISD), 2018; Vol. 3, No. 2.
Nurhuda F, Sihwi SW, Doewes A. Analisis Sentimen Masyarakat Terhadap Calon Presiden Indonesia 2014 Berdasarkan Opini Dari Twitter Menggunakan Metode Naive Bayes Classifier, ITSmart: Jurnal Teknologi dan Informasi, 2016; Vol. 2, No. 2, pp. 35–42.
Wibawa AP, Guntur M, Purnama A, Akbar MF, Dwiyanto FA. Metode-metode Klasifikasi, In Prosiding Seminar Ilmu Komputer dan Teknologi Informasi, 2018.
Yutika CH, Adiwijaya A, Al Faraby S. Analisis Sentimen Berbasis Aspek pada Review Female Daily Menggunakan TF-IDF dan Naïve Bayes, Jurnal Media Informatika Budidarma, 2021; Vol. 5, No. 2, pp. 422–430.
Prosiding ini memberikan akses terbuka langsung ke isinya dengan prinsip bahwa membuat penelitian tersedia secara gratis untuk publik mendukung pertukaran pengetahuan global yang lebih besar.
Semua artikel yang diterbitkan Open Access akan segera dan secara permanen gratis untuk dibaca dan diunduh semua orang.