Kajian Teknologi : Parameter Desain dan Pemodelan Numerik pada Turbin Vortex Berbasis Gravitasi

  • Hafidz Komarul Ikhsan Teknik Mesin ITNY
  • Rivhan Teknik Mesin ITNY
  • Dendi Teknik Mesin ITNY
  • Didit Teknik Mesin ITNY
Kata Kunci: Kajian Teknologi, turbin vortex berbasis gravitasi, pemodelan numerik

Abstrak

Gravitational Water Vortex Power Plant (GWVPP) merupakan salah satu jenis teknologi energi terbarukan menggunakan sumber energi air dan dikategorikan sebagai mini-mikrohidro dengan head rendah dimana struktur saluran dan cekungan digunakan untuk membuat pusaran, yang kemudian di ekstraksi melalui runner. Penelitian ini difokuskan pada pengaruh desain basin dan saluran, bentuk sudu, faktor eksternal, dan simulasi numerik water turbine vortvex. Desain basin kerucut lebih efisiensi  dibanding dengan basin silinder.Bentuk sudu lengkung lebih efisien dari bentuk sudu datar. Debit air yang masuk ke dalam saluran dapat mempengaruhi kecepatan aliran air. Simulasi numerik digunakan untuk mendapatkan data seperti data eksperimen langsung di lapangan menggunakan Computational Fluid Dynamic (CFD). Diameter outlet yang kecil menghasilkan kecepatan maksimal pada basin berbentuk kerucut.Kata kunci: GWVPP, basin, geometri sudu, CFD

Referensi

[1] J. Hanafi and A. Riman, “Life cycle assessment of a mini hydro power plant in Indonesia: A case study in Karai River,” Procedia CIRP, vol. 29, pp. 444–449, 2015, doi: 10.1016/j.procir.2015.02.160.
[2] D. Darmawan, 済無No Title No Title, vol. 53, no. 9. 2019.
[3] C. P. Jawahar and P. A. Michael, “A review on turbines for micro hydro power plant,” Renew. Sustain. Energy Rev., vol. 72, no. October 2015, pp. 882–887, 2017, doi: 10.1016/j.rser.2017.01.133.
[4] Erinofiardi et al., “A Review on Micro Hydropower in Indonesia,” Energy Procedia, vol. 110, no. December 2016, pp. 316–321, 2017, doi: 10.1016/j.egypro.2017.03.146.
[5] P. K. Talukdar, V. Kulkarni, and U. K. Saha, “Field-testing of model helical-bladed hydrokinetic turbines for small-scale power generation,” Renew. Energy, vol. 127, pp. 158–167, 2018, doi: 10.1016/j.renene.2018.04.052.
[6] P. Sritram and R. Suntivarakorn, “Comparative Study of Small Hydropower Turbine Efficiency at Low Head Water,” Energy Procedia, vol. 138, pp. 646–650, 2017, doi: 10.1016/j.egypro.2017.10.181.
[7] Turbulent.be, “Turbulent,” https://www.turbulent.be/projects, 2018. https://www.turbulent.be/projects (accessed Sep. 09, 2020).
[8] O. B. Yaakob, Y. M. Ahmed, A. H. Elbatran, and H. M. Shabara, “A review on micro hydro gravitational vortex power and turbine systems,” J. Teknol. (Sciences Eng., vol. 69, no. 7, pp. 1–7, 2014, doi: 10.11113/jt.v69.3259.
[9] S. Wanchat and R. Suntivarakorn, “Preliminary design of a vortex pool for electrical generation,” Adv. Sci. Lett., vol. 13, no. June, pp. 173–177, 2012, doi: 10.1166/asl.2012.3855.
[10] S. Dhakal et al., “Comparison of cylindrical and conical basins with optimum position of runner: Gravitational water vortex power plant,” Renew. Sustain. Energy Rev., vol. 48, pp. 662–669, 2015, doi: 10.1016/j.rser.2015.04.030.
[11] M. M. Rahman, J. H. Tan, M. T. Fadzlita, and A. R. Wan Khairul Muzammil, “A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources,” IOP Conf. Ser. Mater. Sci. Eng., vol. 217, no. 1, 2017, doi: 10.1088/1757-899X/217/1/012007.
[12] S. Dhakal, S. Nakarmi, P. Pun, A. B. Thapa, and T. R. Bajracharya, “Development and Testing of Runner and Conical Basin for Gravitational Water Vortex Power Plant,” J. Inst. Eng., vol. 10, no. 1, pp. 140–148, 2014, doi: 10.3126/jie.v10i1.10895.
[13] P. Sritram, W. Treedet, and R. Suntivarakorn, “Effect of turbine materials on power generation efficiency from free water vortex hydro power plant,” IOP Conf. Ser. Mater. Sci. Eng., vol. 103, no. 1, 2015, doi: 10.1088/1757-899X/103/1/012018.
[14] K. T. Z. E. Cheng, “Gravitational water vortex turbine with two types of runner blades,” no. November, 2015.
[15] A. Gautam, A. Sapkota, S. Neupane, J. Dhakal, A. B. Timilsina, and S. Shakya, “Study on Effect of Adding Booster Runner in Conical Basin : Gravitational Water Vortex Power Plant : A Numerical and Experimental Approach,” no. August 2017, pp. 107–113, 2016.
[16] P. Sritram and R. Suntivarakorn, “The effects of blade number and turbine baffle plates on the efficiency of free-vortex water turbines,” IOP Conf. Ser. Earth Environ. Sci., vol. 257, no. 1, 2019, doi: 10.1088/1755-1315/257/1/012040.
[17] A. Cristea, “blade optimization of gravitational water vortex turbine,” Rev. Bras. Ergon., vol. 9, no. 2, p. 10, 2016, doi: 10.5151/cidi2017-060.
[18] T. A. Cheema, R. Ullah, and A. S. Saleem, “Performance analysis of a two-stage gravitational water vortex turbine,” IOP Conf. Ser. Earth Environ. Sci., vol. 291, no. 1, 2019, doi: 10.1088/1755-1315/291/1/012039.
[19] M. I. Nafi, “Rancang Bangun Gravitation Water Vortex Power Plant ( GWVPP ) Berbasis Basin Silinder,” vol. 5, no. 1, pp. 27–34, 2020.
[20] A. Ali, F. S. Baig, and A. H. Memon, “Designing Hydel Power Generation Capacity using a Mini/Micro Hydro Power Plant at Left Bank Outfall Drain Drainage System, near Goth Ahori, Jhuddo, Sindh,” Mehran Univ. Res. J. Eng. Technol., vol. 39, no. 3, pp. 554–563, 2020, doi: 10.22581/muet1982.2003.11.
[21] R. Dhakal, R. K. Chaulagain, T. Bajracharya, and S. Shrestha, “Economic feasibility study of gravitational water vortex power plant for the rural electrification of low head region of nepal and its comparative study with other low head power plant,” vol. 1, no. 1, pp. 127–135, 2015.
[22] M. M. Rahman, T. J. Hong, and F. M. Tamiri, “Effects of inlet flow rate and penstock’s geometry on the performance of Gravitational Water Vortex Power Plant,” Proc. Int. Conf. Ind. Eng. Oper. Manag., vol. 2018-March, pp. 2968–2976, 2018.
[23] D. S. Pamuji, N. Effendi, and D. Sugati, “Numerical study on the performance and flow field of varied conical basin for efficient gravitational water vortex power plant,” AIP Conf. Proc., vol. 2187, no. December, 2019, doi: 10.1063/1.5138256.
[24] M. Nachtane, M. Tarfaoui, I. Goda, and M. Rouway, “A review on the technologies, design considerations and numerical models of tidal current turbines,” Renew. Energy, vol. 157, pp. 1274–1288, 2020, doi: 10.1016/j.renene.2020.04.155.
[25] S. Havaldar, “Analyzing Geometries for Inlet Flow Channels to Gravitational Water Vortex Chamber,” no. August, 2020, doi: 10.35291/2454-9150.2020.0149.
[26] Warjito, Budiarso, C. R. Christopher, and D. Adanta, “The effect of basin geometry on gravitational vortex hydropower,” IOP Conf. Ser. Mater. Sci. Eng., vol. 788, no. 1, 2020, doi: 10.1088/1757-899X/788/1/012081.
[27] J. A. Chattha, T. A. Cheema, and N. H. Khan, “Numerical investigation of basin geometries for vortex generation in a gravitational water vortex power plant,” 2017 8th Int. Renew. Energy Congr. IREC 2017, no. Irec, 2017, doi: 10.1109/IREC.2017.7926028.
[28] H. B. Dura, “Design and Analysis of Gravitational Water Vortex Basin and Runner Design and Analysis of Gravitational Water Vortex Basin and Runner,” no. December 2019, pp. 157–164, 2020.
[29] R. Dhakal et al., “Computational and experimental investigation of runner for gravitational water vortex power plant,” 2017 6th Int. Conf. Renew. Energy Res. Appl. ICRERA 2017, vol. 2017-Janua, pp. 365–373, 2017, doi: 10.1109/ICRERA.2017.8191087.
[30] Y. Nishi and T. Inagaki, “Performance and Flow Field of a Gravitation Vortex Type Water Turbine,” Int. J. Rotating Mach., vol. 2017, 2017, doi: 10.1155/2017/2610508.
Diterbitkan
2020-10-27