Pengaplikasian permodelan air tanah pada lingkungan pertambangan

  • satria fitrio anak
  • Tedy Agung Cahyadi Universitas Pembangunan Nasional Veteran Yogyakarta
  • Barlian Dwinagara Universitas Pembangunan Nasional Veteran Yogyakarta
Kata Kunci: model numerik, permodelan, pengeringan tambang, tambang terbuka, pencucian timbunan

Abstrak

Simulasi dalam pengeringan tambang terbuka, banjir, dan penilaian terhadap dampak lingkungan dilakukan dengan menggunakan model aliran air tanah. Dalam hidrogeologi pertambangan kegunaan model numerik sangatlah terbatas karena ketidakpastian yang terkait dengan asumsi dari parameter hidrogeologi dan kondisi batas. Diataranya kurangnya data dalam mengidentifikasi kondisi hidrogeologi, perubahan siklus curah hujan dan penguapan, perubahan akibat pengelolaan lahan akibat aktivitas penambangan, perubahan jadwal kerja penambangan, dan void flooding pasca penambangan. Model numerik merupakan alat yang digunakan dalam mendiagnosis, mengelola, dan memprediksi perilaku air di tanah, yang mana menjadi semakin penting dalam beberapa tahun terakhir. Meskipun pemodelan matematika memiliki kelebihan, pemodelan matematika tidak dapat dijadikan sumber dari segala jawaban atas semua pertanyaan yang berkaitan dengan air tanah. Permodelan merupakan alat dinamis yang harus selalu dikembangkan untuk proses perbaikan berkelanjutan, untuk menjadi sebuah representasi fenomena alam. Maka dari itu pada literatur review ini menyajikan pendekatan metodologis untuk mengetahui model numerik, mengatasi kapabilitas dan keterbatasannya, dalam kasus aplikasi yang berbeda dalam industri pertambangan, seperti drainase lubang terbuka dan pencucian timbunan (heap leach). Karena itu, tujuan dari penelitian ini melalui literatur review yang dilakukan adalah untuk mengetahui bagaimana gambaran pengaplikasian permodelan air tanah pada lingkungan pertambangan tambang terbuka berdasarkan contoh studi kasus pada literatur ini.

Referensi

Literatur Review
1] Yang, T.H., Liu, J., Zhu, W.C., Elsworth, D., Tham, L.G. and Tang, C.A., 2007. A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations. International Journal of Rock Mechanics and Mining Sciences, 44(1), pp.87-97.
[2] Franks, D.M., Boger, D.V., Côte, C.M. and Mulligan, D.R., 2011. Sustainable development principles for the disposal of mining and mineral processing wastes. Resources policy, 36(2), pp.114-122.
[3] Skousen, J.G., Sexstone, A. and Ziemkiewicz, P.F., 2000. Acid mine drainage control and treatment. Reclamation of drastically disturbed lands, 41, pp.131-168.
[4] Salmi, E.F., Nazem, M. and Karakus, M., 2017. The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines. International Journal of Rock Mechanics and Mining Sciences, 91, pp.59-71.
[5] Bulgǎreanu, V.A., 1996. Protection and management of anthroposaline lakes in Romania. Lakes & Reservoirs: Research & Management, 2(3‐4), pp.211-229.
[6] Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Y.Z. and Malanchuk, Z.R., 2018. Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18, pp.1183-1197.
[7] Murdoch, L.C. and Slack, W.W., 2002. Forms of hydraulic fractures in shallow fine-grained formations. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), pp.479-487.
[8] Sahimi, M., 2011. Flow and transport in porous media and fractured rock: from classical methods to modern approaches. John Wiley & Sons.
[9] Adams R., Younger PL. (2001). A strategy for modelling groundwater rebound in abandoned deep mine systems. Ground Water 39(2), 249-261.
[10] Rapantova, N., Grmela, A., Vojtek, D., Halir, J. and Michalek, B., 2007. Ground water flow modelling applications in mining hydrogeology. Mine water and the environment, 26(4), pp.264-270.
[11] Martinez, C., 2010, June. Groundwater Flow Modelling Applications in Mining: Scopes and Limitations. In Proceedings of the 2nd International Congress on Water Management in the Mining Industry, Santiago, Chile (pp. 9-11).
[12] Zhou, Y. and Li, W., 2011. A review of regional groundwater flow modeling. Geoscience frontiers, 2(2), pp.205-214.
[13] Ramasamy, M., Power, C. and Mkandawire, M., 2018. Numerical prediction of the long-term evolution of acid mine drainage at a waste rock pile site remediated with an HDPE-lined cover system. Journal of contaminant hydrology, 216, pp.10-26.
[14] Storey, R.G., Howard, K.W. and Williams, D.D., 2003. Factors controlling riffle‐scale hyporheic exchange flows and their seasonal changes in a gaining stream: A three‐dimensional groundwater flow model. Water Resources Research, 39(2).
[15] Connell, L.D., Jayatilaka, C., Gilfedder, M., Mein, R.G. and Vandervaere, J.P., 2001. Modeling flow and transport in irrigation catchments: 1. Development and testing of subcatchment model. Water Resources Research, 37(4), pp.949-963.
[16] Kampf, S.K., Salazar, M. and Tyler, S.W., 2002. Preliminary investigations of effluent drainage from mining heap leach facilities. Vadose Zone Journal, 1(1), pp.186-196.
[17] Zhao, L., Ren, T. and Wang, N., 2017. Groundwater impact of open cut coal mine and an assessment methodology: A case study in NSW. International Journal of Mining Science and Technology, 27(5), pp.861-866.
[18] Samaniego, L., Kumar, R. and Attinger, S., 2010. Multiscale parameter regionalization of a grid‐based hydrologic model at the mesoscale. Water Resources Research, 46(5).
[19] Carrera, J., 1993. An overview of uncertainties in modelling groundwater solute transport. Journal of contaminant hydrology, 13(1-4), pp.23-48.
[20] MacDonald, A.M., Davies, J. and Ó Dochartaigh, B.É., 2001. Simple methods for assessing groundwater resources in low permeability areas of Africa.
[21] Alloisio, S.A.R.A.H., Douglas, B., McKittrick, R. and Prigneau, P., 2004. Groundwater modelling for large-scale mine dewatering in Chile: MODFLOW or FEFLOW.
[22] Martinez, C. and Ugorets, V., 2010. Use of numerical groundwater modelling for mine dewatering assessment. WIM Santiago, Chile, pp.318-326.
[23] Kupfersberger, H. and Deutsch, C.V., 1999. Methodology for integrating analog geologic data in 3-D variogram modeling. AAPG bulletin, 83(8), pp.1262-1278.
[24] Neuzil, C.E., 1986. Groundwater flow in low‐permeability environments. Water Resources Research, 22(8), pp.1163-1195.
[25] Coppola Jr, E., Szidarovszky, F., Poulton, M. and Charles, E., 2003. Artificial neural network approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping, and climate conditions. Journal of Hydrologic Engineering, 8(6), pp.348-360.
[26] Li, H. and Jiao, J.J., 2001. Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage. Advances in Water Resources, 24(5), pp.565-573.
[27] Hoffmann, J., Leake, S.A., Galloway, D.L. and Wilson, A.M., 2003. MODFLOW-2000 ground-water model--User guide to the subsidence and aquifer-system compaction (SUB) package (No. USGS-03-233). Geological Survey Washington DC.
[28] Brooks, R. H. & Corey. A. T. (1964) Hydraulic Properties of Porous Media. Hydrol. Pap. 3. Colorado State Univ., Fort Collins
[29] Van Genuchten, M. T. (1980) A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Am. J. 44: 892-898
[30] Fredlund, D. G., Xing, A. & Huang, S. (1994) Predicting the Permeability Function for Un¬saturated Soil using the Soil-water Characteristic Curve. Canadian Geotechnical Journal, Vol. 31, No. 3, pp. 533-546
[31] wasy Institute for Water Resources Planning and Systems Research Ltd. (2006) feflow Software (version 5.2)
[32] Diersch, H.J.G., 2013. FEFLOW: finite element modeling of flow, mass and heat transport in porous and fractured media. Springer Science & Business Media.
Diterbitkan
2020-10-27