Sifat sintered body keramik alumina pada ukuran partikel yang direduksi

  • Ade Indra Institut Teknologi Padang
Kata Kunci: ukuran partikel, pressureless sintering, sifat fisik, sieving mesh

Abstrak

Sintered body alumina (Al2O3) berbentuk pellets telah dibuat dengan menvariasikan ukuran partikel. Ukuran partikel awal di-sieving pada mesh 200-270 (53-74 μm). Ukuran partikel lainnya dihaluskan dengan menggunakan centrifugal hammer mill. Hasilnya di-sieving dan diperoleh ukuran partikel yang tertahan pada mesh 270 (>54 μm), tertahan mesh 400 (37-53 μm), dan lolos mesh 400 (<37 μm). Masing-masing variasi ukuran partikel alumina ditambahkan cairan polyvinyl alcohol (PVA) sebagai binder. Proses pencampuran alumina dengan PVA (ditambahkan alkohol sebagai pengencer), dilakukan pada rotary drum dengan ceramic ball didalamnya selama 2 jam. Campuran dikeringkan pada temperatur ruang selama 48 jam untuk menghilangkan alkohol. Gumpalan campuran dihaluskan kembali menggunakan rotary drum selama 2 jam dengan ceramic ball didalamnya. Green body dibuat dengan metode uniaxial pressing pada tekanan 100 MPa. Proses sintering dilakukan dengan pemanasan awal pada temperatur 700oC dengan holding time 1 jam bertujuan untuk menghilangkan PVA, dan kemudian temperatur dinaikkan sampai 1200oC dengan holding time 2 jam. Selama sintering heating rate dipertahankan 5oC/menit. Karakteristik fisik sintered body alumina ditentukan dengan pengujian penyusutan linier, densitas, dan karakterisasi struktur mikro. Densitas  meningkat seiring pengecilan ukuran partikel yaitu dari 2,096 gr/cm3 menjadi 2,140 gr/cm3 dengan peningkatan relative density 2%. Hasil menunjukkan adanya perubahan sifat fisik seiring dengan pengecilan ukuran partikel alumina.

Referensi

[1] X. Q. Song et al., “Sintering behaviour and microwave dielectric properties of BaAl2−2x(ZnSi)xSi2O8 ceramics,” Journal of the European Ceramic Society, vol. 38, no. 4, pp. 1529–1534, 2018.
[2] A. Kozlovskiy, K. Dukenbayev, I. Kenzhina, D. Tosi, and M. Zdorovets, “Dynamics of changes in structural properties of AlN ceramics after Xe+22 ion irradiation,” Vacuum, vol. 155, no. April, pp. 412–422, 2018.
[3] X. ge Chen, H. Zhang, H. song Zhang, Y. de Zhao, and G. Li, “Ce1−xSmxO2−x/2—A novel type of ceramic material for thermal barrier coatings,” Journal of Advanced Ceramics, vol. 5, no. 3, pp. 244–252, 2016.
[4] J. Raharjo, S. Rahayu, and T. Mustika, “Pengaruh Tingkat Kemurnian Bahan Baku Alumina Terhadap Temperatur Sintering dan Karakteristik Keramik Alumina,” Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia untuk Pengolahan Sumber Daya Alam Indonesia, pp. 1–7, 2015.
[5] A. Indra, R. B. Setiawan, I. H. Mulyadi, J. Affi, and Gunawarman, “The Effect of PVA Addition as Binders on the Properties of Hydroxyapatite Sintered Body,” in IOP Conference Series: Materials Science and Engineering, Submitted for publication., 2019.
[6] M. Boniecki et al., “Mechanical properties of alumina/zirconia composites,” Ceramics International, vol. 46, no. 1, pp. 1033–1039, 2020.
[7] M. Boniecki et al., “Alumina/zirconia composites toughened by the addition of graphene flakes,” Ceramics International, vol. 43, no. 13, pp. 10066–10070, 2017.
[8] W. Huo, X. Zhang, Y. Chen, Z. Hu, D. Wang, and J. Yang, “Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method,” Ceramics International, vol. 45, no. 1, pp. 1464–1467, 2019.
[9] S. A. AL-Hammadi, A. M. Al-Amer, and T. A. Saleh, “Alumina-carbon nanofiber composite as a support for MoCo catalysts in hydrodesulfurization reactions,” Chemical Engineering Journal, vol. 345, pp. 242–251, 2018.
[10] M. A. Llosa Tanco, J. A. Medrano, V. Cechetto, F. Gallucci, and D. A. Pacheco Tanaka, “Hydrogen permeation studies of composite supported alumina-carbon molecular sieves membranes: Separation of diluted hydrogen from mixtures with methane,” International Journal of Hydrogen Energy, no. xxxx, 2020.
[11] X. Cai, H. Tong, X. Shen, W. Chen, J. Yan, and J. Hu, “Preparation and characterization of homogeneous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties,” Acta Biomaterialia, vol. 5, no. 7, pp. 2693–2703, 2009.
[12] A. Indra, R. Firdaus, I. H. Mulyadi, J. Affi, and Gunawarman, “Enhancing the physical and mechanical properties of pellet-shaped hydroxyapatite by controlling micron- and nano-sized powder ratios,” Ceramics International, vol. 46, no. 10, pp. 15882–15888, 2020.
[13] Y. Chang, J. Wu, M. Zhang, E. Kupp, and G. L. Messing, “Molten salt synthesis of morphology controlled α-alumina platelets,” Ceramics International, vol. 43, no. 15, pp. 12684–12688, 2017.
[14] A. B.-H. da S. Figueiredo, É. P. Lima Júnior, A. V. Gomes, G. B. M. de Melo, S. N. Monteiro, and R. S. de Biasi, “Response to Ballistic Impact of Alumina-UHMWPE Composites,” Materials Research, vol. 21, no. 5, 2018.
[15] O. Guven, F. Karakas, N. Kodrazi, and M. S. Çelik, “Dependence of morphology on anionic flotation of alumina,” International Journal of Mineral Processing, vol. 156, pp. 69–74, 2016.
[16] C. Wei et al., “Effect of alumina on the microstructure and hydrogen production of Al-riched bulk alloys,” Chemical Physics Letters, vol. 738, no. October 2019, 2020.
[17] Y. Zhao, G. Wang, D. Shang, H. Lei, Q. Wang, and L. Cao, “Mechanisms on Superfine Alumina Inclusions Formation by Al-Deoxidation Reaction for liquid Iron,” Steel Research International, vol. 89, no. 11, pp. 1–9, 2018.
[18] M. Kostecki et al., “Structural and mechanical aspects of multilayer graphene addition in alumina matrix composites–validation of computer simulation model,” Journal of the European Ceramic Society, vol. 36, no. 16, pp. 4171–4179, 2016.
[19] J. Yuan, J. Liu, Y. Zhou, J. Wang, and T. Xv, “Aluminum agglomeration of AP/HTPB composite propellant,” Acta Astronautica, vol. 156, pp. 14–22, 2019.
[20] R. Ghosh, R. Sarkar, and S. Paul, “Development of machinable hydroxyapatite-lanthanum phosphate composite for biomedical applications,” Materials and Design, vol. 106, pp. 161–169, 2016.
[21] E. Saiz, L. Gremillard, G. Menendez, P. Miranda, K. Gryn, and A. P. Tomsia, “Preparation of porous hydroxyapatite scaffolds,” Materials Science and Engineering C, vol. 27, no. 3, pp. 546–550, 2007.
[22] H. Xing et al., “Effect of particle size distribution on the preparation of ZTA ceramic paste applying for stereolithography 3D printing,” Powder Technology, vol. 359, pp. 314–322, 2020.
[23] D. Sofia, D. Barletta, and M. Poletto, “Laser sintering process of ceramic powders: The effect of particle size on the mechanical properties of sintered layers,” Additive Manufacturing, vol. 23, pp. 215–224, 2018.
[24] H. Wu et al., “Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography,” Ceramics International, vol. 42, no. 15, pp. 17290–17294, 2016.
[25] C. Sun et al., “Effect of particle size gradation on the performance of glass-ceramic 3D printing process,” Ceramics International, vol. 43, no. 1, pp. 578–584, 2017.
[26] Y. Luo, S. Ma, C. Liu, Z. Zhao, S. Zheng, and X. Wang, “Effect of particle size and alkali activation on coal fly ash and their role in sintered ceramic tiles,” Journal of the European Ceramic Society, vol. 37, no. 4, pp. 1847–1856, 2017.
[27] F. Niu, D. Wu, F. Lu, G. Liu, G. Ma, and Z. Jia, “Microstructure and macro properties of Al2O3 ceramics prepared by laser engineered net shaping,” Ceramics International, vol. 44, no. 12, pp. 14303–14310, 2018.
[28] K. Miyake, Y. Hirata, T. Shimonosono, and S. Sameshima, “The effect of particle shape on sintering behavior and compressive strength of porous alumina,” Materials, vol. 11, no. 7, 2018.
[29] J. Ding, Q. Liu, B. Zhang, F. Ye, and Y. Gao, “Preparation and characterization of hollow glass microsphere ceramics and silica aerogel/hollow glass microsphere ceramics having low density and low thermal conductivity,” Journal of Alloys and Compounds, vol. 831, p. 154737, 2020.
[30] M. Weiß, P. Sälzler, N. Willenbacher, and E. Koos, “3D-Printed lightweight ceramics using capillary suspensions with incorporated nanoparticles,” Journal of the European Ceramic Society, vol. 40, no. 8, pp. 3140–3147, 2020.
Diterbitkan
2020-10-28