KAPASITAS PENAMPUNG OPTIMUM DAN PAYBACK PERIOD PENERAPAN SISTEM PEMANENAN AIR HUJAN PADA PERMUKIMAN

  • Hendri widiantoni Institut Teknologi Nasional Yogyakarta

Abstrak

Access to clean water is not evenly distributed in some areas of Samarinda, while Samarinda's monthly rainfall is quite high, namely 213.9 mm in 2017. Rainwater can be harvested as an alternative source of clean water. In addition, runoff can be reduced by harvesting rainwater, so this study was conducted using several scenarios to find the best rainwater harvesting system (RWH System) for residences. Samarinda daily rainfall data for 5 years (2015-2019) is used in this study. SPAH was simulated on 15 user groups with roof area ranging from 36 m2 to 120 m2 and the number of occupants 2-5 people. RWH System is also simulated using different tank sizes that available in the market. The optimum tank size is determined based on the lowest annual water cost with the water price benchmark from PERUMDAM Tirta Kencana (public water company). The optimum tank capacity used ranges from 1200-3600 liters. When the optimum tank is used, the SPAH can supply 23.7% to 75.5% of water needs and the payback period of the installation is from 12 years to 19 years.

Referensi

[1] Juliana IC, Kusuma MSB, Cahyono M, Kardhana H, Widjaja M. Rainwater Quality and Quantity Analysis for Rainwater Harvesting System Implementation. Proceeding Joint International Conference of The 3rd PlanoCosmo & The 10th SSMS. Bandung. 2015;36: 485-494.
[2] Juliana IC, Kusuma MSB, Cahyono M, Kardhana H, Cindy M. The Effect of Rainwater Harvesting System Implementation on Hydrological Parameter in Residential Area. Proceedings International Conference On Ecohydrology (ICE). Yogyakarta. 2014;28: 289-298.
[3] Nguyen VM, Ichikawa Y, Ishidaira H. Exploring optimal tank size for rainwater harvesting systems in Asian tropical climates, Hydrological Research Letters. 2018; 12(1): 1-6.
[4] Jenkins D, Pearson F. Feasibility of Rainwater Collection Systems in California. California. Water Resources Center, University of California. 1978
[5] Liaw CH, Tsai Y. Optimum storage volume of rooftop rain water harvesting systems for domestic use. JAWRA. 2004; 40(4): 901–912
[6] Sutjahjo N, Anggraini F, Pamekas R. Konsumsi Dan Pelanggan Air Minum Di Kota Besar Dan Metropolitan. Jurnal Permukiman. 2011; 6(3): 138-146.
[7] Badan Standarisasi Nasional. SNI 03-7065-2005. Tata cara perencanaan sistem plambing. Jakarta. 2005.
[8] Yaziz MI, Gunting H, Sapari N, Ghazali AW. Variations in rainwater quality from roof catchments. Water Research. 1989; 23(6): 761-765.
[9] Ayatri R, Fajar M, Zurfi A. Perencanaan Sistem Pemanenan Air Hujan sebagai Alternatif Penyediaan Air Bersih Gedung Asrama TB 4 ITERA, Jurnal Sumberdaya Alam dan Lingkungan. 2021; 2(2): 93-101.
[10] Texas Water Development Board. The Texas Manual on Rainwater Harvesting. Austin. 2005
[11] Tsutsumi A, Jinno K, Berndtsson R.. Surface and Subsurface Water Balance Estimation by the Groundwater Recharge Model and a 3-D Two-Phase Flow Model. Hydrological Sciences Journal. 2004; 49(2): 205-226.
[12] Suripin. Sistem Drainase Perkotaan yang Berkelanjutan. Yogyakarta. Andi Offset. 2003.
[13] Peraturan Menteri Pekerjaan Umum Dan Perumahan Rakyat Republik Indonesia. 28/PRT/M/2016. Pedoman Analisis Harga Satuan Pekerjaan Bidang Pekerjaan Umum. Jakarta. 2016.
[14] Pujawan IN. Ekonomi Teknik. Yogyakarta. Lautan Pustaka. 2019.
Diterbitkan
2022-11-11