OPTIMIZATION OF HYBRID PHOTOVOLTAIC THERMOELECTRIC GENERATOR SYSTEM FOR IMPROVING SOLAR PANEL EFFICIENCY

Authors

  • Linda Faridah Universitas Silwangi
  • Sesep Dicky Ramadhan Universitas Siliwangi
  • Nundang Busaeri Universitas Siliwangi

DOI:

https://doi.org/10.33579/krvtk.v10i1.5777

Keywords:

Photovoltaic, Thermoelectric Generator, hybrid, efisiensi energi, Micro-Channel Heat Pipe, pelat tembaga.

Abstract

The utilization of solar energy through photovoltaic (PV) technology continues to evolve as a promising renewable energy source. However, the efficiency of solar panels remains limited by heat generated during operation, causing performance degradation as temperature rises. This phenomenon presents a major challenge in optimizing PV technology. This research aims to enhance the efficiency of photovoltaic systems by incorporating Thermoelectric Generator (TEG) modules, resulting in an innovative hybrid Photovoltaic-Thermoelectric Generator (PV-TEG) system. The PV-TEG hybrid system is designed to harness excess heat produced by solar panels, which is then converted into additional electrical energy through TEG modules, utilizing the Seebeck effect. In this experimental study, two heat transfer methods were tested and compared: Micro-Channel Heat Pipe (MCHP) and copper plate. Both methods were evaluated to enhance the temperature gradient across the TEG modules, with the goal of optimizing the hybrid system's performance. The research methodology included design, fabrication, and testing of PV-TEG hybrid system prototypes under various controlled environmental conditions. Measured parameters included operational temperature, output voltage, current, and total power generated. Thermodynamic and electrical analyses were conducted to evaluate energy conversion efficiency and overall system performance. Test results showed that the PV-TEG hybrid system could increase overall efficiency by up to 10% compared to conventional solar panels. The use of copper plates as heat transfer media resulted in higher efficiency compared to MCHP, indicating greater potential for practical implementation. Economic analysis also demonstrated the long-term feasibility of this hybrid system, despite higher initial costs.In conclusion, the developed PV-TEG hybrid system makes a significant contribution to improving the energy efficiency of solar panels.

Downloads

Download data is not yet available.

References

P. Motiei, M. Yaghoubi, E. GoshtashbiRad, and A. Vadiee, “Two-Dimensional Unsteady State Performance Analysis of a Hybrid Photovoltaic-Thermoelectric Generator”, Renewable Energy, vol. 119, pp. 551–565, April 2018. doi: 10.1016/j.renene.2017.11.092

F. A. Diawan, M. R. Kirom, and P. Pangaribuan, “Pemanfaatan 65Thermoelectric Cooler Pada Photovoltaic Sebagai Pembangkit”, e-Proceeding of Engineering, vol. 5, no. 3, pp. 3965–3972, 2018.

W. Pang, H. Yu, Y. Zhang, and H. Yan, “Electrical Characteristics of a Hybrid Photovoltaic/Thermoelectric Generator System”, Energy Technology, vol. 6, no. 7, pp. 1248–1254, July 2018. doi: 10.1002/ente.201700801

M. N. Ibrahim, H. Rezk, M. Al-Dahifallah, and P. Sergeant, “Hybrid Photovoltaic-Thermoelectric Generator Powered Synchronous Reluctance Motor for Pumping Applications”, IEEE Access, vol. 7, pp. 146979–146988. 2019, doi: 10.1109/ACCESS.2019.2945990

C. Babu and P. Ponnambalam, “The Theoretical Performance Evaluation of Hybrid PV-TEG System”, Energy Convers. Manag., vol. 173, no. April, pp. 450–460, 2018. doi: 10.1016/j.enconman.2018.07.104

M. A. I. Khan et al., “An Experimental and Comparative Performance Evaluation of a Hybrid Photovoltaic-Thermoelectric System”, Front. Energy Res., vol. 9, no. September, pp. 1–9, 2021. doi: 10.3389/fenrg.2021.722514

J. S. Sumbodo, M. R. Kirom, and P. Pangaribuan, “Efektivitas Pendingin Menggunakan Termoelektrikpada Panel Surya Effectiveness of Thermoelectric Cooling on Solar Panel”, e-Proceeding Eng., vol. 5, no. 3, pp. 3895–3902, 2018.

D. Suryana, “Pengaruh Temperatur/Suhu terhadap Tegangan yang Dihasilkan Panel Surya Jenis Monokristalin (Studi Kasus: Baristand Industri Surabaya)”, Jurnal Teknologi Proses dan Inovasi Industri, vol. 2, no. 1, pp. 5–8, November 2016. doi: 10.36048/jtpii.v1i2.1791

D. A. H. A. Khadyair, D. A. H. Wanas, and J. L. Haji, “Volt-Ampere Characteristics for Arc Discharge in Low Pressure at Gas CO2”, IOSR J. Appl. Phys., vol. 9, no. 2, pp. 05–10, 2017. doi: 10.9790/4861-0902020510

M. Ejaz, “Optimal Control of Hybrid Photovoltaic-Thermometric Generator System Using GEPSO”, J. Power Energy Eng., vol. 10, no. 03, pp. 1–21, 2022. doi: 10.4236/jpee.2022.103001

U. A. Saleh, M. A. Johar, S. A. Jumaat, M. N. Rejab, and W. A. W. Jamaludin, “Evaluation of a Pv-Teg Hybrid System Configuration for an Improved Energy Output: A review”, Int. J. Renew. Energy Dev., vol. 10, no. 2, pp. 385–400, 2021. doi: 10.14710/ijred.2021.33917

X. Gou, H. Xiao, and S. Yang, “Modeling, Experimental Study and Optimization on Low-Temperature Waste Heat Thermoelectric Generator System”, Appl. Energy, vol. 87, no. 10, pp. 3131–3136, 2010. doi: 10.1016/j.apenergy.2010.02.013

F. Attivissimo, A. Di Nisio, A. M. L. Lanzolla, and M. Paul, “Feasibility of a Photovoltaic-Thermoelectric Generator: Performance Analysis and Simulation Results”, IEEE Trans. Instrum. Meas., vol. 64, no. 5, pp. 1158–1169, 2015. doi: 10.1109/TIM.2015.2410353

M. Hasanuzzaman, A. B. M. A. Malek, M. M. Islam, A. K. Pandey, and N. A. Rahim, “Global Advancement of Cooling Technologies for PV Systems: A review”, Sol. Energy, vol. 137, pp. 25–45, 2016. doi: 10.1016/j.solener.2016.07.010.

N. Kanagaraj, “Photovoltaic and Thermoelectric Generator Combined Hybrid Energy System with an Enhanced Maximum Power Point Tracking Technique for Higher Energy Conversion Efficiency”, Sustain., vol. 13, no. 6, 2021. doi: 10.3390/su13063144

N. Wang, L. Han, H. He, N. H. Park, and K. Koumoto, “A Novel High-Performance Photovoltaic-Thermoelectric Hybrid Device”, Energy Environ. Sci., vol. 4, no. 9, pp. 3676–3679, 2011. doi: 10.1039/c1ee01646f

D. Narducci, P. Bermel, B. Lorenzi, N. Wang, and K. Yazawa, "Hybrid Photovoltaic – Thermoelectric Generators : Materials Issues," In: Hybrid and Fully Thermoelectric Solar Harvesting. Springer Series in Materials Science, vol 268. Springer, Cham., 2018. doi: https://doi.org/10.1007/978-3-319-76427-6_6

B. Lorenzi, “Hybrid thermoelectric-Photovoltaic Generators Under Negative Illumination Conditions”, ACS Applid Energy Material, vol. 5, no. 5, pp. 5381–5387, 2022, doi: 10.1021/acsaem.1c02710

R. Rifky, A. Fikri, M. Mujirudin, and A. Avorizano, “Hibridisasi Panel Surya dengan Modul Termoelektrik Sebagai Pembangkit Listrik Tenaga Surya”, Prosiding Sains Nasional dan Teknologi, vol. 13, no. 1, pp. 108-123, November 2023, doi: 10.36499/psnst.v13i1.8604

Zhang Y and Gao P. Hybrid, "Photovoltaic/Thermoelectric Systems for Round-the-Clock Energy Harvesting", Molecules, vol. 27, no. 21, pp. 7590, November 2022. doi: https://doi.org/10.3390/molecules27217590

Downloads

Published

2025-04-29

How to Cite

[1]
L. Faridah, S. . Dicky Ramadhan, and N. Busaeri, “OPTIMIZATION OF HYBRID PHOTOVOLTAIC THERMOELECTRIC GENERATOR SYSTEM FOR IMPROVING SOLAR PANEL EFFICIENCY ”, Journal Technology of Civil, Electrical, Mechanical, Geology, Mining, and Urban Design, vol. 10, no. 1, pp. 111–118, Apr. 2025.