Menggali Potensi Energi Baru Terbarukan dari Air Asam Tambang di Danau Bekas Penambangan Batubara

  • Nurkhamim UPN "Veteran" Yogyakarta
Keywords: Air asam tambang, sel Volta, elektroda

Abstract

Coal mining activities can produce acid mine drainage which is concentrated in ex-mining lakes. In this study, acid mine water was tested from coal mining lakes into new renewable energy in the form of electrical energy. This research was conducted using the Galvanic Cell principle, by varying the copper (Cu), zinc (Zn) and carbon (C) electrodes into 9 pairs of electrodes by combining the C-Zn, Cu-C and Cu-Zn electrode pairs. In the combination of electrodes, testing was carried out at 3 locations of ex-mining lakes with different pH (Pit 1 = 5.1 , Pit 2 = 5.0, Pit 3 = 3.3) producing electrical energy for Pit 1 Cu-Zn = 11 ,5 ml Volts, C-Zn= 29.6 ml Volts, C-Cu = 45.9 ml Volts, Pit 2 Cu-Zn = 17.0 ml Volts, C-Zn= 31.1 ml volts, C-Cu = 48.6 ml Volts and Pit 3 Cu-Zn = 23.3 ml Volts, C-Zn = 47.4 ml Volts, C-Cu = 59.0 ml Volts.

Overall, this study succeeded in finding 3 pairs of combinations of Voltaic Cells as new electrodes for producing new renewable energy in the form of potential electrical energy from acid water in the former mining lake. Theoretically, the ability to generate electrical energy is also positively correlated with the ability of the electrodes to store electrical energy as the wet battery principle.

Keywords: acid mine drainage, Voltaic cell, electrode

References

[1]Adpendi, A., Oktavia, M., Marliantoni, M., Strategi Pengembangan Pit Lake Bekas Tambang Batubara Sebagai Obyek Wisata Di PT. MBT Kabupaten Bungo Provinsi Jambi, Jurnal Mine Magazine. Vol. 1. No 2., Universitas Muara Bungo, 2020.
[2]Adzikri, F., & Notosudjono, D., Strategi Pengembangan Energi Terbarukan di Indonesia, Jurnal Online Mahasiswa Bidan Teknik Elektro, Vol 1, No 1. Bogor: Universitas Pakuan, 2017.
[3]Asosiasi Energi Surya Indonesia (AESI).
[4]Bargawa, W, S., Reklamasi dan Pastambang, Prodi Teknik Pertambangan UPN “Veteran” Yogyakarta, Kilau Book, 2017, hal. 247-362.
[5]Fic, K., Platek, A., Piwek, J., & Frackowiak, E., Sustainable materials for electrochemical capacitors, Materials Today, Vol. 21, 4. Poland: Institute of Chemistry and Technical Electrochemistry, 2018, p 437-454
[6]Fletcher, S., The Definition of Electrochromism, Journal of Solid State Electrochemistry, Vol.19, Leicestershire: Loughborough University, 2015, p. 3305–3308.
[7]Gautama, R. S., Pembentukan, Pengendalian dan Pengelolaan Air Asam Tambang, Cetakan ke 2, Penerbit ITB, Bandung, 2019.
[8]Islamunisa, B, F., Panggabean, A, S., Pemanfaatan air asam tambang batubara sebagai sumber energi listrik Alternatif”. Vol.3, No.1. Samarinda: Universitas Mulawarman, 2018.
[9]Munarwan, A., Pengelolaan Air Asam Tambang, Universitas Bengkulu. Bengkulu, Unib Press, 2017, hal. 23- 25.
[10]Reza, M., Sari, N., Akbar, M., Novianti, Y., Pemamfaatan reaksi elektrokimia untuk sumber energi listrik alternatif serta netralisasi pada air asam bekas tambang, Jurnal Geosapta, Vol. 3, No.1. Banjarbaru: Universitas Lambung Mangkurat, 2019.
Published
2021-11-09
How to Cite
Nurkhamim (2021) “Menggali Potensi Energi Baru Terbarukan dari Air Asam Tambang di Danau Bekas Penambangan Batubara”, ReTII, pp. 368 -. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/2712 (Accessed: 28September2022).