Pengunaan katalis dan penambahan air effektif pada penghapusan tar model biomassa gasifikasi dengan reaktor microwave

  • Aris Warsita School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia

Abstract

Abstrak

Penghapusan tar efektif  dengan  perlakuan katalis  dan  penambahan air pada reaktor    microwave,

sehingga   didapatkan energi   intensif dan effektif dipromosikan   untuk menghapuskan tar dari gasifikasi biomassa. Toluena dan naftalena digunakan dalam percobaan ini sebagai senyawa tar

model biomassa gasifikasi dengan perlakuan katalis pada suhu pemanasan  dari 700°С-900°С untuk dolomit dan nikel, sedangkan  500°С-700°С pada Y-zeolit, ruthenium dan rhodium dengan waktu tinggal  0-0,24 detik. Karakteristik penambahan air merupakan  teknik baru akan dijelaskan dalam makalah ini. Pada pembelajaran ini   menjelaskan bahwa toluena jauh lebih mudah untuk dihapus dari  pada  naftalena,  sedangkan  rhodium  mempunyai  unjuk  kerja  paling  tinggi  dibandingkan

dolomite, Y-zeolite, nikel, dan ruthenium. Jelaga tidak ditemukan penghapusan tar model ini dan benar-benar bersih selama penghapusan katalis. Pengaruh dari pemanasan ini tidak hanya penghapusan tar,   tetapi   terjadinya reaksi radikal yang dihasilkan oleh microwave sehinggga didapatkan konversi tar menjadi gas-gas berguna. Hasil penelitian menunjukkan pengunaan berbagai

katalis dengan tar model  toluena dan naftalena bersifat asam dengan luas permukaan yang besar, sehingga mempunyai berpotensi bisa digunakan  pada suhu reaksi   lebih rendah dari  500°С.

 

Kata kunci: penghapusan, tar, katalis, microwave, air

Author Biography

Aris Warsita, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia
School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong
Tebal, Penang, Malaysia

Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia

References

Anis, S., Z. A. Zainal, et al. (2013). "Thermocatalytic treatment of biomass tar model compounds via radio frequency." Bioresource Technology 136(0):

-125.

Asadullah, M., T. Miyazawa, et al. (2004). "A comparison of Rh/CeO2/SiO2 catalysts with steam reforming catalysts, dolomite and inert materials as bed materials in low throughput fluidized bed gasification systems." Biomass and Bioenergy 26(3): 269-279.

Asadullah, M., T. Miyazawa, et al. (2003). 64 Catalyst development for low temperature gasification of biomass: Function of char removal in fluidized bed reactor. Studies in Surface Science and Catalysis. M. O. Masakazu Anpo and Y. Hiromi, Elsevier. Volume 145: 307-310.

Aznar, J. s. D. a. M. a. P. (1997). "Biomass Gasification with Steam in Fluidized Bed: Effectiveness of CaO, MgO, and CaO-MgO for Hot Raw Gas Cleaning." Ind. Eng. Chem. Res. 36, 1535-1543.

Bridgwater, A. V. (1994). "Catalysis in thermal biomass conversion." Applied

Catalysis A: General 116(1–2): 5-47.

Bu, Q., H. Lei, et al. (2012). "A review of catalytic hydrodeoxygenation of lignin- derived phenols from biomass pyrolysis." Bioresource Technology 124(0): 470-477.

Buchireddy, P. R., R. M. Bricka, et al. (2010). "Biomass Gasification: Catalytic Removal of Tars over Zeolites and Nickel Supported Zeolites." Energy & Fuels 24(4): 2707-2715.

Chang, A. C. C., L.-S. Chang, et al. "Steam reforming of gasification-derived tar for syngas production." International Journal of Hydrogen Energy(0).

Chiang, K.-Y., Y.-S. Chen, et al. (2012). "Effect of calcium based catalyst on production of synthesis gas in gasification of waste bamboo chopsticks." International Journal of Hydrogen Energy 37(18): 13737-13745.

Corella, J. O. o., A.; Toledo, J. M (1999). "Biomass Gasification with Air in a

Fluidized Bed: Exhaustive Tar Elimination with Com- mercial Steam Reforming Catalysts " Energy Fuels 13, 702-709.

.

Devi, L., K. J. Ptasinski, et al. (2005). "Catalytic decomposition of biomass tars: use of dolomite and untreated olivine." Renewable Energy 30(4): 565-587.

Dou, B., J. Gao, et al. (2003). "Catalytic cracking of tar component from high- temperature fuel gas." Applied Thermal Engineering 23(17): 2229-2239.

Farag, S., L. Kouisni, et al. (2014). "Lumped Approach in Kinetic Modeling of

Microwave Pyrolysis of Kraft Lignin." Energy & Fuels 28(2): 1406-1417.

Gates, B. C. (1992 ). " Catalytic Chemistry " Wiley & Sons Inc., Singapore.

Gedye, R. N. and J. B. Wei (1998). Canadian Journal of Chemistry 76(5): 525- 532.

Grieco, E. M., C. Gervasio, et al. (2013). "Lanthanum–chromium–nickel perovskites for the catalytic cracking of tar model compounds." Fuel 103(0): 393-397.

Gusta, E., Dalai, A.K., Uddin, M.A. (2009 ). "Catalytic decomposition of biomass tars with dolomites " Energy Fuels 23 2264–2272.

Hu, X. and G. Lu (2009). "Investigation of the steam reforming of a series of model compounds derived from bio-oil for hydrogen production." Applied Catalysis B: Environmental 88(3–4): 376-385.

Kruse, A. (2008). "Supercritical water gasification." Biofuels, Bioproducts and

Biorefining 2(5): 415-437.

Lu, Y., L. Guo, et al. (2007). "Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water." Chemical Engineering Journal 131(1–3): 233-244.

Lv, P., J. Chang, et al. (2003). "Biomass Air−Steam Gasification in a Fluidized Bed to Produce Hydrogen-Rich Gas." Energy & Fuels 17(3): 677-682.

Mastellone, M. L. and L. Zaccariello (2013). "Metals flow analysis applied to the hydrogen production by catalytic gasification of plastics." International

Journal of Hydrogen Energy 38(9): 3621-3629.

Milne TA, E. R. (1998.). "Biomass gasi cation “tarsâ€: their nature, formation and conversion " NREL, Golden, CO, USA Report no. NREL/TP-570-25357

Mun, T.-Y., J.-W. Kim, et al. (2013). "Air gasification of dried sewage sludge in a two-stage gasifier: Part 1. The effects and reusability of additives on the removal of tar and hydrogen production." International Journal of Hydrogen Energy 38(13): 5226-5234.

Perez-Martinez D, G. S., Centeno A. (2006 ). "Effects of the H2S partial pressure on the performance of bimetallic noble-metal molybdenum catalysts insimultaneous hydrogenation and hydrode sulfurization reactions " ApplCatalA:Gen 315:35–43.

Radwan, A. M., T. Kyotani, et al. (2000). "Characterization of coke deposited from cracking of benzene over USY zeolite catalyst." Applied Catalysis A: General 192(1): 43-50.

Rapagná, S., H. Provendier, et al. (2002). "Development of catalysts suitable for hydrogen or syn-gas production from biomass gasification." Biomass and Bioenergy 22(5): 377-388.

Ribeiro, A. M., J. C. Santos, et al. (2010). "PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide." Chemical Engineering Journal 163(3): 355-363.

Simell, P. A., J. O. Hepola, et al. (1997). "Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts." Fuel 76(12): 1117-1127.

Skoulou, V., E. Kantarelis, et al. (2009). "Effect of biomass leaching on H2 production, ash and tar behavior during high temperature steam gasification (HTSG) process." International Journal of Hydrogen Energy

(14): 5666-5673.

Sutton, D., B. Kelleher, et al. (2001). "Investigation of nickel supported catalysts for the upgrading of brown peat derived gasification products." Bioresource Technology 80(2): 111-116.

Sutton, D., B. Kelleher, et al. (2002). "Catalytic conditioning of organic volatile products produced by peat pyrolysis." Biomass and Bioenergy 23(3): 209- 216.

Świerczyński, D., S. Libs, et al. (2007). "Steam reforming of tar from a biomass gasification process over Ni/olivine catalyst using toluene as a model compound." Applied Catalysis B: Environmental 74(3–4): 211-222.

Taralas, G. and M. G. Kontominas (2004). "Kinetic modelling of VOC catalytic

steam pyrolysis for tar abatement phenomena in gasification/pyrolysis technologies." Fuel 83(9): 1235-1245.

Taralas, G. and M. G. Kontominas (2006). "Pyrolysis of solid residues commencing from the olive oil food industry for potential hydrogen production." Journal of Analytical and Applied Pyrolysis 76(1–2): 109-

Thostenson, E. T., Chou, T.W., (1999 ). "Microwave processing: fundamentals and applications " Composites Part A 30 1055–1071.

Virginie, M., J. Adánez, et al. (2012). "Effect of Fe–olivine on the tar content during biomass gasification in a dual fluidized bed." Applied Catalysis B: Environmental 121–122(0): 214-222.

Virginie, M., C. Courson, et al. (2010). "Toluene steam reforming as tar model molecule produced during biomass gasification with an iron/olivine catalyst." Comptes Rendus Chimie 13(10): 1319-1325.

Vreugdenhil, B. J., Zwart, R.W.R (2009 ). "Tar formation in pyrolysis and gasification." Wicks, G.G., Clark, ECN-E-08-087.

Wang, L., Y. Hisada, et al. (2012). "Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene." Applied Catalysis B: Environmental 121–122(0): 95-104.

Yin, C. (2012). "Microwave-assisted pyrolysis of biomass for liquid biofuels production." Bioresource Technology 120(0): 273-284.

Yu, Q. Z., C. Brage, et al. (2009). "Effects of Chinese dolomites on tar cracking in gasification of birch." Fuel 88(10): 1922-1926.

Published
2017-01-16
How to Cite
Warsita, A. (2017) “Pengunaan katalis dan penambahan air effektif pada penghapusan tar model biomassa gasifikasi dengan reaktor microwave”, ReTII, 00. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/328 (Accessed: 15January2025).