Studi kinetik perlakuan panas-katalis pada senyawa tar model biomassa dan penambahan air dengan reaktor microwave

  • Aris Warsita School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia

Abstract

Abstrak

Parameter model kinetik pada konversi toluena mengunakan  microwave perlakuan panas-katalis dan penambahan air merupakan pokok analisis dalam makalah ini. Konstanta laju kinetik ditentukan dengan menggunakan metode integral berdasarkan data eksperimental ditambah dengan persamaan Arrhenius untuk memperoleh energi aktivasi dan faktor pre-eksponensial. Model ini memberikan

jaminan yang baik berdasarkan data eksperimen. Model kinetik juga divalidasi dengan standard error dari 3% rata-rata. Ekstrapolasi model menunjukkan tren yang wajar untuk memprediksi konversi toluena  dan  hasil  produk  baik  dalam  perawatan  panas  dan  katalitik.  Pada  iradiasi  microwave

didapatkan energi aktivasi konversi toluena lebih rendah dengan kisaran 3-27 kJ molâ»1 dibandingkan

pemanasan konvensional dilaporkan dalam literatur. Laju reaksi keseluruhan adalah enam kali lebih

tinggi dibandingkan dengan pemanasan konvensional. Secara keseluruhan model kinetik bekerja lebih baik  untuk  menghilangkan  model  tar  tanpa  pengaruh  gas  reformasi  dalam  tingkat  keandalan

ditunjukkan dalam penelitian ini.

 

Kata kunci : kinetik microwave perlakuan toluene konversi

Author Biography

Aris Warsita, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia
School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong
Tebal, Penang, Malaysia

Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia

References

Abu El-Rub, Z., E. A. Bramer, et al. (2008). "Experimental comparison of biomass chars with other catalysts for tar reduction." Fuel 87(10–

: 2243-2252.

Agafonov, G. L., I. Naydenova, et al. (2007). "Detailed kinetic modeling of soot formation in

shock tube pyrolysis and oxidation of toluene and

n-heptane." Proceedings of the Combustion

Institute 31(1): 575-583.

Anis, S. and Z. A. Zainal (2011). "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review." Renewable and Sustainable Energy Reviews 15(5): 2355-2377.

Anis, S., Z. A. Zainal, et al. (2013). "Thermocatalytic treatment of biomass tar model compounds via radio frequency." Bioresource Technology

(0): 117-125.

Benson, S. W., O’Neal, H.E., (1970). "Kinetic Data on Gas Phase Unimolecular Reactions

Government Printing Office, Washington, D.C.. Bhattacharya, M., T. Basak, et al. (2011). "A

comprehensive theoretical analysis for the effect of microwave heating on the progress of a first

order endothermic reaction." Chemical

Engineering Science 66(23): 5832-5851.

Chen, W.-H., J.-G. Jheng, et al. (2008). "Hydrogen generation from a catalytic water gas shift

reaction under microwave irradiation."

International Journal of Hydrogen Energy 33(18):

-4797.

Coll, R., J. Salvadó, et al. (2001). "Steam reforming model compounds of biomass gasification tars:

conversion at different operating conditions and

tendency towards coke formation." Fuel

Processing Technology 74(1): 19-31.

Corella, J., M. A. Caballero, et al. (2003). "Two Advanced Models for the Kinetics of the Variation of the Tar Composition in Its Catalytic Elimination in Biomass Gasification." Industrial

& Engineering Chemistry Research 42(13): 3001-

Devi, L., K. J. Ptasinski, et al. (2003). "A review of the primary measures for tar elimination in biomass

gasification processes." Biomass and Bioenergy

(2): 125-140.

Dufour, A., Valin, S., Castelli, P., Thiery, S.b., Boissonnet, G., Zoulalian, A., Glaude, P.- A.,

(2009 ). "Mechanisms and kinetics of methane thermal conversion in a syngas

" Ind. Eng. Chem. Res. 48, 6564–6572.

Frenklach, M., D. W. Clary, et al. (1985). "Twentieth

Symposium (International) on

CombustionDetailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene." Symposium (International) on Combustion 20(1):

-901.

Galwey, A. K. and M. E. Brown (2002). "Application of the Arrhenius equation to solid state kinetics: can this be justified?" Thermochimica Acta

(1): 91-98.

Giachi, G., Frediani, M., Rosi, L., Frediani, P., (2011

). " Synthesis and processing of biodegradable and bio-based polymers by microwave irradiation " InTech, Rijeka.

Herrero, M. A., J. M. Kremsner, et al. (2008).

"Nonthermal Microwave Effects Revisited:  On

the Importance of Internal Temperature

Monitoring and Agitation in Microwave

Chemistry." The Journal of Organic Chemistry

(1): 36-47.

Jess, A. (1996). "Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels." Fuel 75(12): 1441-1448.

Levenspiel, O. (1995). "Chemical Reaction Engineering." Department of Chemical Engineering Oregon State University John Wiley

& Sons New York Chichester Weinheim

Brisbane Singapore Toronto

Motasemi, F. and F. N. Ani (2012). "A review on microwave-assisted production of biodiesel." Renewable and Sustainable Energy Reviews

(7): 4719-4733.

Narayanaswamy, V. and N. T. Clemens (2013). "Simultaneous LII and PIV measurements in the soot formation region of turbulent non-premixed jet flames." Proceedings of the Combustion Institute 34(1): 1455-1463.

Narváez, I., J. Corella, et al. (1997). "Fresh Tar (from a Biomass Gasifier) Elimination over a Commercial Steam-Reforming Catalyst. Kinetics and Effect of Different Variables of Operation." Industrial & Engineering Chemistry Research

(2): 317-327.

P. Bruinsma, T. A., J. Dankelman**), and J. A. E.

Spaan (1988). "Model of the coronary circulation based on pressure dependence of coronary resistance and compliance*)

" Basic Research in Cardiology Basic Res Cardio

:510-524 (1988).

Perreux, L. and A. Loupy (2001). "A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and

mechanistic considerations." Tetrahedron 57(45):

-9223.

Poutsma, M. L. (1987). A review of thermolysis studies of model compounds relevant to processing of

coal. Other Information: Portions of this document are illegible in microfiche products. Original copy available until stock is exhausted: Medium: X; Size: Pages: 228.

Richter, H. and J. B. Howard (2000). "Formation of

polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways." Progress in Energy and Combustion Science 26(4–6): 565-608.

Shen, Y. and K. Yoshikawa (2013). "Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review." Renewable and Sustainable Energy Reviews

(0): 371-392.

Steinfeld, J. I., Francisco, J.S., Hase, W.L., (1999 ). "Chemical Kinetics and Dynamics " Prentice- Hall, New Jersey.

Taralas, G. and M. G. Kontominas (2004). "Kinetic modelling of VOC catalytic steam pyrolysis for tar abatement phenomena in gasification/pyrolysis technologies." Fuel 83(9):

-1245.

Taralas, G. and M. G. Kontominas (2005). "Numerical Modeling of Tar Species/VOC Dissociation for Clean and Intelligent Energy Production."

Energy & Fuels 19(1): 87-93.

Taralas, G., M. G. Kontominas, et al. (2003). "Modeling the Thermal Destruction of Toluene (C7H8) as Tar-Related Species for Fuel Gas

Cleanup." Energy & Fuels 17(2): 329-337.

Trimm, D. L. (1997). "Coke formation and minimisation during steam reforming reactions." Catalysis Today 37(3): 233-238.

Yin, C. (2012). "Microwave-assisted pyrolysis of biomass for liquid biofuels production." Bioresource Technology 120(0): 273-284.

Published
2017-01-16
How to Cite
Warsita, A. (2017) “Studi kinetik perlakuan panas-katalis pada senyawa tar model biomassa dan penambahan air dengan reaktor microwave”, ReTII, 00. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/333 (Accessed: 4December2024).