REVIEW: SISTEM DYE-SENSITIZED SOLAR CELL TERKOMBINASI DENGAN ORGANIC LIGHT-EMITTING DIODE SEBAGAI SUMBER PENERANGAN BERBASIS GREEN CHEMISTRY

  • M. Al Rizqi Dharma Fauzi Universitas Airlangga
  • Ari Hasna Widyapuspa Universitas Kristen Satya Wacana
  • Harsasi Setyawati

Abstract

Krisis energi merupakan masalah besar yang sedang dihadapi dunia saat ini. Persediaan energi tidak terbarukan semakin berkurang sedangkan kebutuhan energi semakin meningkat setiap tahun. Dye Sensitized Solar Cell (DSSC) merupakan salah satu alternatif sumber energi terbarukan yang dapat mengkonversi cahaya matahari menjadi energi listrik. Bersama Organic Light Emitting Diode (OLED) pada paper ini, akan dibahas sistem terkombinasi DSSC dan OLED agar dihasilkan sebuah sistem penerangan berbasis green chemistry. Mekanisme kerja DSSC dan OLED terlebih dahulu dibahas pada paper ini untuk menentukan komponen – komponen terbaik dalam pembuatannya. Pewarna Ni(II)-Porfirin-Fluorena disarankan sebagai material pewarna dalam DSSC. Kompleks Ni(II)-Porfirin-Fluorena dipilih berdasarkan efisiensinya yang baik, preparasinya yang mudah, dan harga preparasi yang murah. Porfirin-Fluorena tanpa Ni(II) disarankan untuk digunakan sebagai material emissive layer dalam OLED. Komponen – komponen lainnya seperti material transparan, katoda, anoda, hole transport layer, electron transport layer, dan elektrolit juga dibahas didalam paper ini untuk mendukung terwujudnya sumber penerangan berbasis green chemistry.

 

Kata Kunci: DSSC, OLED, green chemistry, porfirin, fluorena

Author Biographies

M. Al Rizqi Dharma Fauzi, Universitas Airlangga

Universitas Airlangga

Ari Hasna Widyapuspa, Universitas Kristen Satya Wacana

Universitas Kristen Satya Wacana

References

Adachi, C. et al., 2001, Nearly 100% internal phosphorescence efficiency in an organic light emitting device, J. App. Phys., 90, p5048-5053.

Blank, B. et al., 2015, Analysis of the light-induced degradation of differently matched tandem solar cells with and without an intermediate reflector using the Power Matching Method, j. solmat, 143, p1-8.

Cavaleiro, J.A.S. et al., 1989, Porphyrin synthesis, Rev. Port. Quim., 31, p29-41.

Chen, X. et al., 2002, High-efficiency red-light emission from polyfluorenes grafted with cyclometalated iridium complexes and charge transport moeiety, J. Am. Chem. Soc., 125, p636-637.

Chu, Y., 2011, Review and Comparison of Different Solar Energy Technologies, Global Energy Network Institute.

Copeland, A.W. et al., 1941, The Photovoltaic

Effect.

Durán, J.C. et al., 1991, Optimization of the junction depth and doping of solar cell emitters, Solar Cells, 31, p497-503.

E, Yongsheng, 2014, Extraction and purification of fluorene from wash oil, Advanced Materials Research, 989-994, p31-34.

Fitra, M. et al., 2013, TiO2 dye sensitized solar cells cathode using recycle battery, Energy Procedia, 36, p333-340

Forrest, S.R. et al., 1997, The stacked OLED (SOLED): A new type of organic device for achieving high-resolution full-color displays, Synthetic Metals, 91, p9–13.

Garfias-Gonzalez, K.I. et al., 2015, High fluorescent porphyrin-PAMAM-fluorene dendrimers, Molecules, 20, p8548-8559.

Giribabu, L. et al., 2012, Phthalocyanines: Potential alternative sensitizers to Ru(II) polypyridyl complexes for dye-sensitized solar cells, Current Science, 102, p991-1000

Godibo, D.J. et al., 2015, Dye sensitized solar cells using natural pigments from five plants and quasi-solid state electrolyte, J. Braz. Chem. Soc., 26, p92-101

Han, T-H. et al., 2012, Extremely efficient flexible organic light-emitting diodes with modifed graphene oxide, Nature Photonics, 6, p105-110

Kitaoka, S. et al., 2014, A simple method for efficient synthesis of tetrapyridyl-porphyrin using Adler method in acidic ionic liquids, RSC Adv., 4, p26777-26783

Langenegger, T., X, Guo, 2007, Synthesis of 9-fluorenol, Swiss Federal Institute of Technology Zurich.

Liu, T-P. et al., 2010, Synthesis of fluorene and indenofluorene compounds: Tandem palladium-catalyzed suzuki cross-coupling and cyclization, Angew. Chem. Int. Ed., 49, p2909-2912.

Longo, C. et al., 2003, Dye-sensitized solar cells: A succesful combination of materials, J. Braz. Chem. Soc., 14, p889-901

Mahmood, U. et al., 2015, Co-sensitization of TiO2-MWCNTs hybrid anode for efficient dye-sensitized solar cells, J. Electacta, 173, p607-612.

Moskowitz, P.D., Fthenakis, V.M., 2000, Photovoltaics: Environmental, health, and safety issues and perspectives, Prog. Photovolt. Res. Appl., 8, p27-38.

Pohl, R. et al., 2004, Red-Green-Blue emission from tris(5-aryl-8-quinolinolate)Al(III) complexes, J. Org. Chem.

Polikarpov, E. et al., 2011, Achieving high efficiency in organic light-emitting diode, Material Matters, 2.

Robertson, Neil et al., 2014, Neutral copper(I) dipyrrin complexes and their use as sensitizers in dye-sensitized solar cells, Dalton Transactions.

Robertson, Neil et al., 2014, Giant magnetoresistance in a molecular thin film as an intrinsic property, Adv. Funct. Mater., 24, p2383-2388

Robertson, Neil et al., 2013, Diacetylene bridged triphenylamines as hole transport materials for solid state dye sensitized solar cells, J. Mater. Chem. A.

Setiyawati, H. et al., 2015, Promising dye sensitizer on solar cell from complexes of metal and rhodamin B, International Journal of Renewable Energy Research, 5, p694-698.

Sun, Z-C. et al., 2011, Synthesis, characterization and spectral properties of substituted tetraphenylporphyrin iron chloride complexes, Molecules, 16, p2960-2970.

Tress, Wolfgang, 2014, Organic solar cells: theory, experiment, and device simulation, Springer International Publishing Switzerland.

Woods, J.S. et al., 1993, Quantitative measurement of porphyrins in biological tissues and evaluation of tissue porphyrins during toxicant exposures, Fundamental and Applied Toxicology, 21, p291-297.

Wong, K-T. et al., 2002, 4,5-diazafluorene-incorporated ter(9,9-diarylfluorene): A novel molecular doping strategy for improving the electron injection property of a highly efficient OLED blue emitter, Org. Lett., 7(10), p1979-1982

Wong, K-T. et al., 2005, Nonconjugated hybrid of carbazole and fluorene: A novel host material for highly efficient green and red phosphorescent OLEDs, Org. Lett., 7(24), p5361-5364.

Wong, W-Y. et al., 2009, Challenges in organometallic research: Great opportunity for solar cells and OLEDs, J. Org. Chem., p2644-2647.

Wu, C-H. et al., 2012, Fluorene-modified porphyrin for efficient dye-sensitized solar cell, Chem. Comm.

Xiang, H. et al., 2012, Tunable fluorescent/phosphorescent platinum(II) porphyrin-fluorene copolymers for ratiometric dual emissive oxygen sensing, Inorg. Chem., 51, p5208-5212.

Yella, A. et al., 2011, Porphyrin-Sensitized solar

cells with cobalt(II/III)-based redox

electtolyte exceed 12 percent efficiency,

Science, 334, p629-634.

http://www.chemistryexplained.com/Ru-Sp/Solar-Cells.html (Diakses pada 11 September 2015)

http://www.sunwellsolar.com (Diakses pada 10 Agustus 2015)

http://lg.com (Diakses pada 1 September 2015)

Published
2017-01-17
How to Cite
Fauzi, M. A. R. D., Widyapuspa, A. H. and Setyawati, H. (2017) “REVIEW: SISTEM DYE-SENSITIZED SOLAR CELL TERKOMBINASI DENGAN ORGANIC LIGHT-EMITTING DIODE SEBAGAI SUMBER PENERANGAN BERBASIS GREEN CHEMISTRY”, ReTII, 00. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/392 (Accessed: 15January2025).