Penerapan Back Propagation Neural Network untuk Identifikasi Bangunan di Wilayah Rawan Longsor

  • Bagus Gilang Pratama institut teknologi nasional yogyakarta
  • SELY NOVITA SARI
  • Joko Prasojo institut teknologi nasional yogyakarta

Abstract

Landslides are a natural disaster that frequently occurs in Indonesia, requiring effective prediction methods for risk mitigation. This research aims to investigate the performance and accuracy of the Back Propagation Neural Network (BPNN) in identifying buildings in landslide-prone areas. The dataset used consists of satellite images and building parameters such as building plans, floor plans, foundations, and topographic elements. The data was normalized using the Min-Max Scaler and divided into training (60%), validation (15%), and test sets (25%). The BPNN model was designed with 8 neurons in the input layer, 30 neurons in the hidden layer, and 3 neurons in the output layer, using ReLU and Softmax activation functions. The results show that the model achieved an accuracy of 90%, with the confusion matrix demonstrating accurate classification for most buildings. Out of the total samples, only 1.2% misclassification occurred in the "Less Safe" category. In conclusion, the model achieved an accuracy of 93%, with an average precision of 93.4%, an average recall of 93%, and an F1-Score of 93%. These results indicate that the BPNN model has excellent performance in detecting and predicting the safety level of buildings in landslide-prone areas

References

Maulana BF, Taufik M. Pemetaan Daerah Potensi Longsor di Kabupaten Trenggalek Menggunakan Data Citra Satelit Multi-Temporal.

Naryanto HS, Soewandita H, Ganesha D, Prawiradisastra F, Kristijono A. Analisis Penyebab Kejadian dan Evaluasi Bencana Tanah Longsor di Desa Banaran, Kecamatan Pulung, Kabupaten Ponorogo, Provinsi Jawa Timur Tanggal 1 April 2017.

Putro GS, Setiawan MN, Barizi ARF, Setiawan J. Kajian Geologi Dan Stabilitas Lereng Dengan Finite Element Methode (Fem) Untuk Pembangunan Dan Pengembangan Perumahan: Bukit Pandhawa Godean Sleman.

Bencana et al P. Penataan Kawasan Pasca Bencana Tanah Longsor Di Puncak Pass, Kecamatan Cipanas, Kabupaten Cianjur Tanggal 28 Maret 2018.

Salimah A, Ammar MZ, Rahmawati DS, Yelvi Y, Swastika TW. Landslide Analysis Study and Cisewu Countermeasures in District, Garut Regency, West Java.

Sholikah SNH, Prambudi SKN, Effendi MY, Safira L, Alwinda N, Setiaji R. Analisis Kesiapsiagaan dan Mitigasi Bencana Tanah Longsor di Kabupaten Ponorogo.

Sari SN, Pratama B, R. Prastowo B. Pemodelan Artificial Neural Network (ANN) Untuk Identifikasi Bangunan Daerah Rawan Longsor.

Damanik MRS, Nurman A, Aminy MY, Ritonga I. Analisis Potensi Longsor Sungai di Daerah Aliran Sungai (DAS) Padang Sumatera Utara.

Nurhayati I, Febrioko D, Sugito S, Sutrisno J. Mitigasi Bencana Tanah Longsor di Desa Begaganlimo Kecamatan Gondang Kabupaten Mojokerto.

Harahap KF. Aminullah A, Priyosulistyo H. Estimasi Dimensi Optimum dan Rasio Tulangan Gedung Hotel Yogyakarta dengan Artificial Neural Network.

Sari SN, Pratama BG, Ircham I. Kolaborasi Jaringan Saraf Tiruan (JST) Dalam Identifikasi Prioritas Penanganan Pemeliharaan Jalan Kabupaten.

Published
2024-11-13
How to Cite
Pratama, B. G., SARI, S. N. and Prasojo, J. (2024) “Penerapan Back Propagation Neural Network untuk Identifikasi Bangunan di Wilayah Rawan Longsor”, ReTII, pp. 172 -. Available at: //journal.itny.ac.id/index.php/ReTII/article/view/5437 (Accessed: 22December2024).