PENGARUH NUMBER OF NEIGHBORS TERHADAP PERHITUNGAN ORDINARY KRIGING DAN COKRIGING

  • calvin maharza universitas pembangunan nasional "veteran" yogyakarta
Kata Kunci: Ordinary Kriging, Cokriging, Number of Neighbour, Cross Validasi

Abstrak

Penelitian ini  bertujuan untuk membandingkan akurasi perhitungan dengan metode kriging dan cokriging serta pengaruh number of neighbors terhadap perhitungan.  Metode penelitian meliputi analisis assay sebanyak 24 buah. Pemilihan model menghasilkan spherical dengan arah orientasi anisotropic. Hasil penelitian untuk cross validation pada metode kriging dengan number of neighbour paling baik menghasilkan nilai 0,772 dan berturut-turut nilai SE, R2, Y-intercept dan SE prediction adalah 0,338; 0,191; 0,85; dan 1,196. Sedangkan hasil penelitian untuk cross validation pada metode cokriging dengan number of neighbour paling baik menghasilkan nilai 1,279 dan berturut-turut nilai SE, R2, Y-intercept dan SE prediction adalah 0,070; 0,938; -1,01 dan 0,330. Berdasarkan parameter tersebut disimpulkan bahwa pengaruh number of neighbour terhadap perhitungan bernilai positif sesuai dengan jarak pengaruh dari suatu sampel dan perhitungan dengan menggunakan metode cokriging memiliki akurasi yang lebih baik dibandingkan dengan metode ordinary kriging.

Referensi

[1] W. S. Bargawa, A. Rauf, and N. A. Amri, “Gold resource modeling using pod indicator kriging.” Progress in Applied Mathematics in Science and Engineering Proceedings. AIP Conf. Proc. 1705, pp. 020025-1-120025-8, 2016.
[2] B. I. Harman, H. Koseoglu, and C. O. Yigit, “Performance evaluation of IDW, Kriging and multiquadric interpolation methods in producing noise mapping”: A case study at the city of Isparta, Turkey. Applied Acoustics, 112, pp. 147-157, 2016.
[3] W. S. Bargawa, R. F. Tobing, “Iron Ore Resource Modeling and Estimation Using Geostatistics”, AIP Conf. Proc. 2019, Corrected proof, In Press.
[4] W. S. Bargawa, “Mineral resources estimation using weighted jackknife kriging.” Advances of Science and Technology for Society. AIP Conf. Proc. 1755, pp. 120001-120006, 2016.
[5] W. S. Bargawa, “Weighted jackknife ordinary kriging - problem solution of the precision in mineral resources estimation,” IOP Conf. Series: Earth and Environmental Science 212 (012059), pp.1-9, 2018.
[6] Isaaks, E.H. and Srivastava, R.M., Applied Geostatistics, Oxford University Press, New York, 1989.
[7] I. Zulkarnain and W. S. Bargawa, “Classification of coal resources using drill hole spacing analysis (DHSA),” Journal of Geological Resource and Engineering, 6, pp. 151-159, 2018.
[8] W. S. Bargawa, “Mineral resources estimation based on block modeling.” Progress in Applied Mathematics in Science and Engineering Proceedings. AIP Conf. Proc. 1705, pp. 020001-1-020001-8, 2016.
[9] V. Senapathi, and C. R. Paramasivam, “An introduction to various spatial analysis techniques,” in GIS and Geostatistical Techniques for Groundwater Science, 2019, pp. 23-30.
[10] K. Kang, C. Qin, B. Lee, and I. Lee, “Modified screening-based kriging method with cross-validation and application to engineering design.” Applied Mathematical Modelling, 70, pp. 626-642, 2019.
[11] Daya, A. A., & Hosseininasab, M. (2019). Application and comparison of the cokriging and the fractal model for identifying geochemical anomalies in Janja area, SE Iran. International Journal of Mining and Mineral Engineering, 10(1), 1-26.
Diterbitkan
2020-10-27