Pengunaan reaktor microwave efektif pada penghapusan tar dengan perlakuan panas dan penambahan air

  • Aris Warsita School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia

Abstrak

Abstrak

Penghapusan tar pada perlakuan panas efektif dengan microwave sebagai reaktor, mempunyai energi

pembangkitan  intensif    telah  dipromosikan  pada  penghapusan  tar  dari  gas  gasifikasi  biomassa. Toluena dan naftalena sebagai senyawa tar model biomassa gasifikasi  dengan perlakuan panas serta penambahan air pada perlakuan suhu dari 8000C - 12000C dengan  waktu tinggal 0-0,4 detik . Metoda baru ini   akan dijelaskan pada makalah ini dibagian karakteristik pemanasan. Studi ini akan menjelaskan bahwa toluena jauh lebih mudah untuk dihapus dari naftalena. Perlakuan panas pada penghapusan tar efektif dengan penambahan air, ini telah didapatkan hasil penghapusan tar pada suhu penghapusan rendah dan didapatkan efeisiensi hampir 100% pada suhu optimum referensi. Jelaga ditemukan sebagai produk akhir pengobatan penghapusan panas dari model tar dan benar-benar bersih pada suhu 12000C. Pemanasan dengan microwave tidak saja menghasilkan pengahapusan tar namun juga terjadi reaksi radikal. Studi ini menunjukkan bahwa penghapusan tar dengan pemanasan dan penambahan  air dengan tar model toluena dan naftalena yang bersifat asam, ini sangat berpengaruh terhadap penghapusan tar dan konversi gas-gas bermanfaat.

 

Kata kunci : microwave panas tar air toluene.

 

##submission.authorBiography##

##submission.authorWithAffiliation##
School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong
Tebal, Penang, Malaysia

Jurusan Teknik Mesin, Sekolah Tinggi Teknologi Nasional Yogyakarta, Jl. Babarsari Caturtunggal, Depok, Sleman, 55281 Yogyakarta, Indonesia

Referensi

Anis, S. and Z. A. Zainal (2011). "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review." Renewable and Sustainable Energy Reviews 15(5): 2355-2377.

Bergman, P. C. A., van Paasen, S.V.B., Boerrigter, H. (2003 ). "The novel „„OLGA‟‟ technology for complete tar removal from biomass producer gas. In: Bridgewater, A.V. (Ed.), Pyrolysis and Gasification of Biomass and Waste. ." CPL press, Newbury pp. 347–356.

Boroson, M. L., J. B. Howard, et al. (1989). "Heterogeneous cracking of wood pyrolysis tars over fresh wood char surfaces." Energy & Fuels 3(6): 735-740.

Fassinou, W. F., L. Van de Steene, et al. (2009). "Pyrolysis of Pinus pinaster in a two-stage gasifier: Influence of processing parameters and thermal cracking of tar." Fuel Processing Technology 90(1): 75-90.

Frenklach, M. and H. Wang (1994). Detailed Mechanism and Modeling of Soot Particle Formation. Soot Formation in Combustion. H.

Bockhorn, Springer Berlin Heidelberg. 59: 165- 192.

Gao, N., A. Li, et al. (2009). "A novel reforming method for hydrogen production from biomass steam gasification." Bioresource Technology

(18): 4271-4277.

Hofbauer, H., G. Veronik, et al. (1997). The FICFB — Gasification Process. Developments in Thermochemical Biomass Conversion. A. V.

Bridgwater and D. G. B. Boocock, Springer

Netherlands: 1016-1025.

Huang, Y. F., W. H. Kuan, et al. (2008). "Total recovery of resources and energy from rice straw using microwave-induced pyrolysis." Bioresource

Technology 99(17): 8252-8258.

Huang, Y. F., W. H. Kuan, et al. (2010). "Hydrogen- rich fuel gas from rice straw via microwave- induced pyrolysis." Bioresource Technology

(6): 1968-1973.

J. Tang, F. H., M. (2012). "Microwave barrel reactor use in trimethylolpropane oleate synthesis by Candida antarctica lipase in a biphasic non- solvent process."

Jess, A. (1996). "Mechanisms and kinetics of thermal reactions of aromatic hydrocarbons from pyrolysis of solid fuels." Fuel 75(12): 1441-1448. Jones, D. A., T. P. Lelyveld, et al. (2002). "Microwave

heating applications in environmental

engineering—a review." Resources, Conservation and Recycling 34(2): 75-90.

Lee, B.-K., K.-R. Jung, et al. (2008). "Development and application of a novel swirl cyclone scrubber—(1) Experimental." Journal of Aerosol

Science 39(12): 1079-1088.

Milne;, T. A. and R. J. Evans ( 1998). "Biomass Gasifier “Tarsâ€: Their Nature, Formation, and Conversion." National Renewable Energy Laboratory.

Namioka, T., Y.-i. Son, et al. (2009). "Practical Method of Gravimetric Tar Analysis That Takes into Account a Thermal Cracking Reaction

Scheme." Energy & Fuels 23(12): 6156-6162.

Onozaki, M., K. Watanabe, et al. (2006). "Hydrogen production by the partial oxidation and steam reforming of tar from hot coke oven gas." Fuel 85(2): 143-149.

Radwan, A. M., T. Kyotani, et al. (2000). "Characterization of coke deposited from cracking of benzene over USY zeolite catalyst." Applied Catalysis A: General 192(1): 43-50.

Salema, A. A. and F. N. Ani (2011). "Microwave induced pyrolysis of oil palm biomass." Bioresource Technology 102(3): 3388-3395.

Simell, P. A., J. O. Hepola, et al. (1997). "Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts." Fuel 76(12): 1117-1127.

Sutton, W. H. (1992). "Microwave Processing of Ceramics - An Overview."

Tao, K., N. Ohta, et al. (2013). "Plasma enhanced catalytic reforming of biomass tar model compound to syngas." Fuel 104(0): 53-57.

Thostenson, E. T. and T. W. Chou (1999). "Microwave processing: fundamentals and applications." Composites Part A: Applied

Science and Manufacturing 30(9): 1055-1071. Vivanpatarakij, S. and S. Assabumrungrat (2013). "Thermodynamic analysis of combined unit of

biomass gasifier and tar steam reformer for hydrogen production and tar removal." International Journal of Hydrogen Energy 38(10):

-3936.

Wicks, G. G. (1997). "Microwave Technology for

Waste Management Applications:

Treatment of Discarded Electronic Circuitry (U)."

Westinghouse Savannah River Company

Savannah River Site

Aiken, South Carolina 29808.

Yin, C. (2012). "Microwave-assisted pyrolysis of biomass for liquid biofuels production." Bioresource Technology 120(0): 273-284.

Yu, V. B., K. I. Rybakov, et al. (2001). "High-

temperature microwave processing of materials." Journal of Physics D: Applied Physics 34(13): R55.

Zhang, W. (2010). "Automotive fuels from biomass via

gasification." Fuel Processing Technology 91(8):

-876.

Diterbitkan
2017-01-16