Menghitung Hasil Estimasi Sumberdaya Nikel Laterit Menggunakan Metode Ordinary Kriging (OK)
Abstract
Nickel laterites make up 60 to 70% of the world's Ni resources, but even though they have been mined for approx 140 years, until 2000 they accounted for less than 40% of global Ni production, the remainder is from sulfide ores. Laterite nickel deposits are formed by prolonged and pervasive weathering of ultramafic rocks containing Ni silicates, generally in tropical to subtropical climates. The deposits can be further classified as hydro silicate deposits, clay silicate deposits, and oxide deposits based on the mineralogy of the ore. The physical and chemical properties of laterite nickel deposits are a function of many factors, including the composition of the host rock. This research is divided into several stages, namely: field data collection (drill data), data from this stage is used to determine the depth and distribution of the laterite zone. Perform laboratory analysis to obtain Ni levels. As well as Performing Modeling to determine the distribution model of the elements in nickel deposits based on laboratory analysis data, the method used in this study is themethod Ordinary Kriging (OK).
References
[2] Lintjewas, L., 2012. Model Geologi dan Desain Pit tambang Endapan Nikela Laterit Daerah Watudemba, Sulawesi
Tenggara. Thesis Fakultas Teknik Geologi, Universitas Gadjah Mada. Tidak Terbit.
[3] Almasi A., Jalalian A., Toomanian N., 2014, Using OK dan IDW Methods for Prediction the Spatial Variability of A Hotizon Depth and OM in Soils of Shahrekord Iran, Journal of Environment and Earth Science Vol. , No. 15.
[4] Bargawa W.S, Nur Ali A. Mineral Resources Estimation Based on Block Modeling. 2016. AIP Publishing LLC 978-0-
7354-1352.
[5] Hadi Z.L, Waterman S.B, Eddy W. 2021. Permodelan dan Estimasi Sumberdaya Nikel Laterit Menggunakan Metode
Nearest Neighbour Polygon (NNP). Vol. 1. No. 2, Februari 2021.
[6] Hendro Purnomo. Comparison The Perfomance of Ordinary Kriging and Inverse Distance Weighting Method for Mapping
Nickel Laterite Properties. Kurvatek Vol. 04. No. 1, April 2019 (57-67). ISSN: 2477-7870.
[7] Barbulescu A., Bautu A., Bautu E., 2020, Optimizing Inverse Distance Weighting with Particle Swarm Optimization, Appl. Sci. 2020, 10, 2054; doi:10.3390/app10062054
[8] Bargawa S.B, Recky F.T. 2020. Iron Ore Resource Modeling and Estimation Using Geostatistics. Published by AIP
Publishing. 978-0-7354-2004-5.
[9] Dowd P. A., 2016, Geostatistical ore reserve estimation: a case study in a disseminated nickel deposit. Orta Dogu Teknik Universitesi, Leeds
[10] Waterman S.B, Hendro P. 2016. Performance Evaluation of Ordinary Kriging and Inverse Distance Weighting Methods
for Nickel Laterite Resources Estimation. Indonesian Journal of Geography, Vol. 44, No. 2, Desember 2016:121-134.
[11] Berrar D., 2018, Cross-validation, Encyclopedia of Bioinformatics and Computational. Biology, Volume 1, Elsevier, pp. 542–545.
[12] Bargawa S.B, Simon P.N, Raden H, Oktarian W.L, Risky F.B. Geostatical Modeling of Ore in a Laterite Nickel
Deposit. Vol. 1, No. 1 (2020): 301-310.
Prosiding ini memberikan akses terbuka langsung ke isinya dengan prinsip bahwa membuat penelitian tersedia secara gratis untuk publik mendukung pertukaran pengetahuan global yang lebih besar.
Semua artikel yang diterbitkan Open Access akan segera dan secara permanen gratis untuk dibaca dan diunduh semua orang.