Penggunaan Metode Elbow untuk Pemilihan Jumlah Klaster dalam Identifikasi Bahan Material Shelter Modular
Abstract
Modular shelters have become a popular solution for temporary infrastructure construction, especially in disaster-affected areas. One of the main challenges is selecting the appropriate materials, which can be addressed through cluster analysis to group materials based on similar characteristics. The Elbow Method is used to determine the optimal number of clusters in this analysis, with the "elbow" point on the graph indicating that four clusters are ideal. The K-Means algorithm is then applied to group material data based on the centroid of each cluster. The application of the Elbow Method has proven effective in determining the optimal number of clusters for material identification in modular shelter construction. By analyzing the relationship between the number of clusters and inertia, the Elbow Method successfully indicates that four clusters are the most appropriate. The Elbow graph shows a significant "elbow" after the third and fourth clusters, where the decrease in inertia slows down, indicating that adding more than four clusters does not significantly improve data grouping. Quantitatively, clustering with four clusters provides a balance between data variation and ease of interpretation. Each cluster exhibits distinct characteristics based on the average values of structural and architectural attributes, with variability measured through standard deviation
References
Nurdiani N, Katarina W, Putra RR. The Application Of Modular Architecture On Apartment Buildings.
Pramishinta PA, Widyarko W. Flexible Housing Implementation In Dome-Shape Post-Disaster Relief House: Is It Possible?.
Ganiron TU. Development and Efficiency of Prefabricated Building Components.
Dharmawan C, Alviano M. Pre-fabricated Material for Modular House.
Yatmo YA, Atmodiwirjo P, Saginatari DP, Harahap MMY. Development of Modular School Design As A Permanent Solution For Post-Disaster Reconstruction In Indonesia.
Thai H, Ho QV, Li W, Ngo T. Progressive Collapse and Robustness of Modular High-Rise Buildings.
Pham DT, Dimov S, Nguyen CD. Selection of K in K-means Clustering.
Riduwan M, Fatichah C, Yuniarti A. Klasterisasi Dokumen Menggunakan Weighted K-Means Berdasarkan Relevansi Topik.
Johra MB. Soft Clustering Dengan Algoritma Fuzzy K-Means (Studi Kasus : Pengelompokan Desa Di Kota Tidore Kepulauan).
Sari SN, Pratama BG, Ircham I. Kolaborasi Jaringan Saraf Tiruan (JST) Dalam Identifikasi Prioritas Penanganan Pemeliharaan Jalan Kabupaten.
Wang S, Mou J. Buckling Analysis of a Large Shelter with Composites.
Soegoto ES, Subarjat R, Valentina T. Modular Panel House Design With Prefabricated Production Technology.
Sihombing SC, Sihombing DA. Pengelompokan Tingkat Kesejahteraan Masyarakat di Sumatera Utara dengan Metode K-Means Clustering.
Prosiding ini memberikan akses terbuka langsung ke isinya dengan prinsip bahwa membuat penelitian tersedia secara gratis untuk publik mendukung pertukaran pengetahuan global yang lebih besar.
Semua artikel yang diterbitkan Open Access akan segera dan secara permanen gratis untuk dibaca dan diunduh semua orang.