PENGARUH WAKTU PENGELASAN TERHADAP REAKSI ANTARMUKA PADA SAMBUNGAN ALUMINIUM AL6061 DAN BAJA GALVANIS

  • Sigit Edy Purwanto Mechanical Engineering Department, Institut Teknologi Nasional Yogyakarta, Indonesia
  • Mustakim Mustakim Mechanical Engineering Department, Institut Teknologi Nasional Yogyakarta, Indonesia
  • Triyono Triyono Mechanical Engineering Department, Engineering Faculty, Universitas Sebelas Maret, Surakarta, Indonesia
  • Nurul Muhayat Mechanical Engineering Department, Engineering Faculty, Universitas Sebelas Maret, Surakarta, Indonesia

Abstract

Abstrak

Bahan bakar merupakan kebutuhan yang sangat penting bagi alat transportasi. Saat ini, cadangan bahan bakar fosil semakin berkurang. Untuk menghemat bahan bakar diperlukan alat transportasi yang ringan. Konstruksi yang ringan dapat diperoleh dengan menggabungkan dua atau lebih jenis material. Jenis sambungan yang sesuai untuk mendapatkan konstruksi yang ringan adalah sambungan las. Penelitian ini bertujuan untuk mengetahui sifat mampu las antara baja galvanis dengan aluminium Al6061. Metode pengelasan yang digunakan adalah Resistance Spot Welding (RSW). Sifat mampu las dari kedua material dapat diketahui dari  jenis senyawa intermetalik yang terbentuk pada antarmuka lasan. Hasil penelitian ini menunjukkan bahwa reaksi antarmuka yang terbentuk untuk waktu pengelasan 4 dan 5 siklus adalah senyawa intermetalik FeAl dengan ketebalan masing-masing 19,25 μm dan 10,52 μm, untuk waktu pengelasan 6 siklus adalah senyawa intermetalik FeAl3 dengan ketebalan 8,07 μm. Kekeraran tertinggi 623,1 HV0.1 dan kekerasan terendah 572,2 HV0.1.

 

Kata kunci: Aluminium Al6061, Baja Galvanis, RSW, Senyawa Intermetalik

 

Abstract

Fuel is a very important in transportation. Unfortunately, the amount of fossil fuel reserve is decreasing. Using lightweight material for vehicle is one way to save fossil fuel. Lightweight construction can be obtained by combining two or more types of material. The right type of connection to get a lightweight construction is a welded joint. This study aimed to determine the properties of weldability between galvanized steel and aluminum Al6061. The welding method used was Resistance Spot Welding (RSW). The weldability of the two materials could be seen from the types of intermetallic compounds formed at the weld interface. The results of this study indicated that the formed interface reaction was FeAl intermetallic compound layer with a thickness of 19,25 μm and 10,52 μm respectively for 4 and  5 cicles of welding time, and FeA3 intermetallic compound layer with a thickness of 8,07 μm for 6 cycles of the welding time The highest hardness was 623.1 HV0.1 and the lowest hardness was 572.2 HV0.1.

 

Keywords: Aluminum, Galvanized Steel, RSW, Intermetallic Compound

Downloads

Download data is not yet available.

References

Shubhavardhan, R.N., Surendran S. Friction Welding to Join Stainless Steel and Aluminum Materials. International Journal of Metallurgical & Materials Science and Engineering. 2012; 2(3): 53-73.

Hitoshi Ozaki, Muneharu Kutsuna. Dissimilar Metal Joining of Zinc Coated Steel and Aluminum Alloy by Laser Roll Welding. Welding Processes. 2012: 33-54.

Aizawa, T., Kashani, M., Okagawa, K., Application of Magnetic Pulse Welding for Aluminum Alloys and SPCC Steel Sheet Joints. Welding Journal. 2007; 86: 119-124.

Lin S. B., Song J.L., Yang C. L., Fan C. L., Zhang D., W. Brazability of Dissimilar Metals Tungsten Inert Gas Butt Welding–Brazing between Aluminum Alloy and Stainless Steel with Al–Cu Filler Metal. Materials and Design. 2010; 31: 2637-2642.

Honggang Dong, Wenjin Hua, Yuping Duana, Xudong Wanga, Chuang Dong. Dissimilar Metal Joining of Aluminum Alloy to Galvanized Steel with Al–Si, Al–Cu, Al–Si–Cu and Zn–Al filler wires. Journal of Materials Processing Technology. 2012; 212: 458-464.

Albright, C. E. The Fracture Toughness Testing of Steel-Aluminum Deformation Welds. Engineering Fracture Mechanics. 1981; 15: 193-203.

Chen, C. M., Kovacevic, R. Joining of Al 6061 Alloy to AISI 1018 Steel by Combined Effects of Fusion and Solid State Welding,. International Journal of Machine Tools & Manufacture. 2004; 44: 1205-1214.

Schimek, M., Springer, A., Kaierle, S., Kracht, D., Wesling, V. Laser-Welded Dissimilar Steel-Aluminum Seams for Automotive Lightweight Construction. Physics Procedia. 2012; 39: 43-50.

Rattana Borrisutthekul, Pusit Mitsomwang, Sirirat Rattanachan, Yoshiharu Mutoh. Feasibility of Using TIG Welding in Dissimilar Metals between Steel/Aluminum Alloy. Energy Research Journal. 2010; 1(2): 82-86.

Ahmet Hasanbaşoğlu, Ramazan Kaçar. Resistance Spot Weldability of Dissimilar Materials. Materials and Design. 2007; 28: 1794-1800.

Ranfeng Qiu, Hongxin Shi, Keke Zhang, Yimin Tu, Chihiro Iwamoto, Shinobu Satonaka. Interfacial Characterization of Joint between Mild Steel and Aluminum Alloy Welded by Resistance Spot Welding. Materials Characterization. 2010; 61: 684-688.

Selvamani, S.T, Umanath, K, Palanikumar, K. Heat Transfer Analysis during Friction Stir Welding of Al6061-T6 Alloy. International Journal of Engineering Research and Applications. 2011; 1(4): 1453-1460.

Marashi P., Pouranvari M. Amirabdollahian S., Abedi A., Goodarzi M. Microstructure and Failure Behavior of Dissimilar Resistance Spot Welds between Low Carbon Galvanized and Austenitic Stainless Steels. Materials Science and Engineering A. 2008; 480, pp. 175-180.

Tang H., Hou W., Hu S. J., Zhang H, Force Characteristics of Resistance Spot Welding of Steels. Welding Research. 2000; 7: 175-183.

Abdul wahab H. Khuder, Esam J. Ebraheam. Study the Factors Effecting on Welding Joint of Dissimilar Metals. Al-Khwarizmi Engineering Journal. 2011. 7(1): 76-81.

A. Gean, S.A. Westgate, J.C. Kucza, J.C. Ehrstorm. Static and fatigue behavior of spot-welded 5182-0 aluminum alloy sheet. Welding Journal. 1999; 78: 80-86.

Steve Lampman. Editor. Weld Integrity and Performance. USA: ASM International. 1997.

Chakrabarti, D.J., Laughlin, D.E. Phase Relation and Precipitation in Al-Mg-Si Alloys with Cu Additions. Progress in Materials Science. 2004; 49(3-4): 389-410.

Manladan, S.M., Yusof, F., Ramesh, S., Fadzil, M. A review on resistance spot welding of magnesium alloys. International Journal of Advanced Manufacturing Technology. 2016; 86(5–8): 1805–1825.

Kolhe, K.P., Kumar, P., Dharaskar R.M., Datta C.K. Effects of Heat Input on Grain Details of Multipass Submerged Arc Weld Joint. International Journal of Agricultural Engineering. 2010; 3(1): 115-120.

Dowling, J.M., Corbett, J.M., And Kerr, H.W. Inclusion Phases and the Nucleation of Acicular Ferrite in Submerged Arc Welds in High Strength Low Alloy Steels. Metallurgical Transactions. 1986; 17A: 1610-1623.

Mukhopadhyay, G., Bhattacharya, S., & Ray, K. K. Strength assessment of spot-welded sheets of interstitial free steels. Journal of Materials Processing Technology. 2009; 209(4): 1995-2007.

Oikawa H., Murayama G., Sakiyama T., Takahashi Y., Ishikawa T. Resistance Spot Weldability of High Strength Steel (HSS) Sheets for Automobiles. Nippon Steel Technical Report. Report Number: 95. 2007.

Published
2019-12-21
How to Cite
[1]
S. E. Purwanto, M. Mustakim, T. Triyono, and N. Muhayat, “PENGARUH WAKTU PENGELASAN TERHADAP REAKSI ANTARMUKA PADA SAMBUNGAN ALUMINIUM AL6061 DAN BAJA GALVANIS”, Journal Technology of Civil, Electrical, Mechanical, Geology, Mining, and Urban Design, vol. 4, no. 2, pp. 25-36, Dec. 2019.
Section
Articles