PREDIKSI COEFFICIENT OF SEISMIC DENGAN METODE SCALED DISTANCE UNTUK ANALISIS KESTABILAN LERENG PADA BEBAN DINAMIS

  • Ifa Aulia Chusna UPN "Veteran" Yogyakarta
  • Mr UPN "Veteran" Yogyakarta
  • Wawong Dwi Ratminah UPN "Veteran" Yogyakarta
  • Toto Sudarto Geotechnical, Hydrology, and Infrastructure Section, PT Suprabari Mapanindo Mineral, Indonesia
  • R. Dikky Surya Ramadhan Geotechnical, Hydrology, and Infrastructure Section, PT Suprabari Mapanindo Mineral, Indonesia
Kata Kunci: Coefficient of Seismic, Getaran Peledakan, Peledakan Overburden, Scaled Distance

Abstrak

Peledakan merupakan metode pembongkaran batuan yang sangat umum diterapkan di tambang batubara untuk membongkar material overburden. Peledakan dapat memberikan efek ketidakstabilan pada lereng karena getaran yang dihasilkan. Semakin dekat jarak lereng dengan lokasi peledakan, maka semakin besar pula getaran yang akan diterima oleh lereng tersebut. Penelitian ini bertujuan untuk menghitung Coefficient of Seismic (Ks) sebagai input data pada analisis kestabilan lereng berdasarkan besarnya getaran dari blasting center dengan toe lereng terdekat. Getaran peledakan yang berupa Peak Particle Velocity (PPV) dan Peak Ground Acceleration (PGA) akan diprediksi berdasarkan jarak dengan metode perhitungan scaled distrance, sedangkan hasil prediksi pada PGA akan dilakukan perhitungan statistika untuk mengetahui distribusi data parameter Ks. Prediksi PPV dan PGA berdasarkan data pengukuran memiliki R2 dengan hubungan yang tinggi, yaitu 0,9923 dan 0,8202. Tingkat akurasi pada prediksi PPV dari perhitungan ini lebih baik daripada prediksi PPV dengan Metode Holmberg-Persson yang dimodifikasi. Nilai rata-rata Kh sebagai input analisis kestabilan lereng adalah 0,031 dengan Distribusi Gamma.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

D. G. Anderson, G. R. Martin, I. Lam, and J. N. Wang, Seismic analysis and design of retaining walls, buried structures, slopes, and embankments, Washington Department of Transportation (WSDOT), p. 611, 2008.

R. Baker, R. Shukha, V. Operstein, and S. Frydman, “Stability charts for pseudo-static slope stability analysis,†Soil Dynamics and Earthquake Engineering, vol. 26, no. 9, pp. 813-823, 2006.

W. W. Chin, The partial least squares approach to structural equation modeling, Modern methods for business research, 1998.

W. I. Duvall and B. Petkof, Spherical propagation of explosion-generated strain pulses in rock,†(No. 5481-5485). US Department of the Interior, Bureau of Mines, 1959.

W. Hustrulid and W. Lu, “Some general design concepts regarding the control of blast-induced damage during rock slope excavation,†Proceedings of the 7th international symposium on rock fragmentation by blasting, Beijing, pp. 595 - 604, 2002.

S. Iverson, C. Kerkering and W. Hustrulid, “Application of the NIOSH-modified holmberg-persson approach to perimeter blast design,†In Proceedings of the 34th Conference on Explosives and Blasting Technique, vol. 2, pp. 1-33, 2008.

Jr. E. Kavazanjian, N. Matasovic, T. Hadj-Hamou, J. N. J. Wang, and G. Munfakh, Geotechnical earthquake engineering, Reference Manual,†FHWA-HI-99-012, 1998.

Kementerian Energi dan Sumber Daya Mineral. Keputusan Menteri ESDM No. 1827K/30/MEM/2012 Tahun 2018 tentang Pedoman Pelaksanaan Kaidah Pertambangan yang Baik, 2018.

C. A. Kliche, Slope stability, SME Mining Engineering Handbook, 2011.

S. L. Kramer, Geotechnical Earthquake Engineering, Pearson Education India, 1996.

R. Kumar, D. Choudhury and K. Bhargava, “Response of foundations subjected to blast loadings: state of the art review,†Disaster Advances, vol. 5 no. 1, pp. 54-63, 2012.

C. McKenzie, C. Scherpenisse, J. Arriagada, and J. Jones, “Application of computer assisted modelling to final wall blast design," Proceedings of the EXPLO’95–A Conference Exploring the Role of Rock Breakage in Mining and Quarrying, pp. 285-292, 1995.

H. Noferesti and A. Hazegh, “Comparison of pseudo-static, newmark and dynamic response analysis of the final pit wall of sungun copper mine,†International Journal of Mining and Geo-Engineering, vol. 52, no. 2, pp.141-147, 2018.

L. Sambuelli, “Theoretical derivation of a peak particle velocity–distance law for the prediction of vibrations from blasting,†rock mechanics and rock engineering,†vol. 42 no. 3, pp. 547-556, 2009.

K. Terzaghi, Mechanism of landslides, Harvard University, Department of Engineering. 1951.

G. R. Tripathy and I. D. Gupta, “Prediction of ground vibrations due to construction blasts in different types of rock,†rock mechanics and rock engineering, vol. 35 no. 3, pp.195-204, 2002.

Washington Department of Transportation (WSDOT), Geotechnical Design Manual, M 46-03.06. 2011.

D. C. Wyllie, Rock Slope Engineering: civil and mining, 5th edition (Based on the 3rd edition by E. Hoek and J. Bray,†The Institution of Mining and Metallurgy. New York: Taylor & Francis, 2018.

W. Z. Xiong, G. W. Bin, L. Ting, L. J. Qing, X. J. Lin and L. Xin, “Blasting vibration generated by breaking-blasting large barriers with EBBLB,†Shock and Vibration, 2016.

O. Yilmaz and T. Unlu, “An application of the Modified Holmberg–Persson Approach for Tunnel Blasting Design,†Tunnelling and Underground Space Technology, vol. 43, pp. 113-122, 2014.

K. Zhang and P. Cao, “Slope seismic stability analysis on kinematical element method and its application,†Soil Dynamics and Earthquake Engineering, vol. 50, pp. 62-71, 2013.

Diterbitkan
2023-04-17