PENGARUH KARAKTERISTIK MINERALOGI TERHADAP KAPASITAS TUKAR KATION ZEOLIT ALAM PACITAN, JAWA TIMUR

  • Wawan Budianta Universitas Gadjah Mada
  • I Wayan Warmada Departemen Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada
  • Makruf Nurudin Departemen Ilmu Tanah, Fakultas Pertanian, Universitas Gadjah Mada, Yogyakarta
Kata Kunci: Geology

Abstrak

Penelitian ini bertujuan untuk menganalisis pengaruh komposisi mineralogi dan kimia terhadap kapasitas tukar kation (KTK) sampel zeolit alam yang diperoleh dari Pacitan, Jawa Timur. Sepuluh sampel tuf zeolitik dilakukan dianalisis komposisi mineralogi dan kimia, kapasitas tukar kation (KTK). Hasil komposisi mineralogi menunjukkan bahwa zeolit alam mempunyai jenis mordenit dominan dijumpai dalam jumlah yang yang signifikan, dengan persentase bervariasi dari 32% hingga 38%. Berdasarkan analisis kimia, kandungan kimia sampel tersusun oleh SiO2 yang berkisar antara 61% hingga 66% dan Al2O3 dari 9% hingga 11% yang kemudian diperoleh rasio antara Si/Al. Nilai kapasitas tukar kation (KTK) bervariasi dari 70 meq/100 g hingga 91 meq/100 g dengan nilai rata-rata 82 meq/100 g. Variasi nilai tersebut kemungkinan besar dipengaruhi oleh perbedaan persentase mineral zeolit dan mineral pengotor lainnya.  Zeolit jenis mordenit juga diduga paling berpengaruh terhadap kapasitas tukar kation (KTK), sedangkan mineral lempung memberikan pengaruh yang relatif kecil. Kapasitas tukar kation (KTK) kesepuluh zeolit alam yang diteliti menunjukkan korelasi positif dengan kandungan zeolit tipe mordenit serta dengan kandungan total mineral berpori dan rasio Si/Al. Hasil penelitian diharapkan dapat memberikan informasi untuk berbagai tujuan terutama di bidang pertanian dan lingkungan.

##plugins.generic.usageStats.downloads##

##plugins.generic.usageStats.noStats##

Referensi

E. Cataldo, L. Salvi, F. Paoli, M. Fucile, G. Masciandaro, and D. Manzi., “Application of zeolites in agriculture and other potential uses: a review,†Agronomy, vol. 11, no. 8, pp. 1547, 2021. https://doi.org/10.3390/agronomy11081547.

Y. Lv, B. Ma, Y. Liu, C. Wang, and Y. Chen, “Adsorption behavior and mechanism of mixed heavy metal ions by zeolite adsorbent prepared from lithium leach residue,†Microporous Mesoporous Mater., vol. 329, pp. 111553, 2022 https://doi.org/10.1016/j.micromeso.2021.111553.

E. Pérez-Botella, S. Valencia, and F. Rey, “Zeolites in adsorption processes: state of the art and future prospects,†Chem. Rev., vol. 122, no. 24, pp. 17647–17695, 2022. https://doi.org/10.1021/acs.chemrev.2c00140.

K. Kusdarto, "Potensi zeolit di Indonesia," Jurnal Zeolit Indonesia, vol. 7, no. 2, 78-87, 2008.

K. M. Manjaiah, R. Mukhopadhyay, R. Paul, S. C. Datta, P. Kumararaja, and B. Sarkar, Clay minerals and zeolites for environmentally sustainable agriculture, in Modified Clay and Zeolite Nanocomposite Materials, M. Mercurio, B. Sarkar, and A. Langella, Ed. Elsevier, pp. 309–329, 2019. https://doi.org/10.1016/B978-0-12-814617-0.00008-6.

L. Kruszewski, V. Palchik, Y. Vapnik, K. Nowak, K. Banasik, I. Galuskina, I. "Mineralogical, geochemical, and rock mechanic characteristics of zeolite-bearing rocks of the hatrurim basin, Israel," Minerals, vol. 11, no. 10, 1062, 2021. https://doi.org/10.3390/min11101062.

Asrafil, A. Idrus, and D. Wintolo, “Eksplorasi endapan hidrotermal di Daerah Kasihan, Pacitan, Jawa Timur,†J. Geol. dan Sumberd. Miner., vol. 18, no. 4, pp. 191–200, 2017.

G. P. Gillman and E. A. Sumpter, “Modification to the Compulsive Exchange Method for Measuring Exchange Characteristics of Soils,†Soil Res., vol. 24, no. 1, pp. 61–66, 1986.

A. Alshameri, W. Xinghu, A. S. Dawood, C. Xin, C. Yan, and A. M. Assabri, “Characterization of Yemeni Natural Zeolite (Al-Ahyuq Area) and its environment applications: a review,†J. Ecol. Eng., vol. 20, no. 4, pp. 157–166, 2019. https://doi.org/10.12911/22998993/102842.

P. C. Piilonen, G. Poirier, W. Lechner, R. Rowe, and R. P. Richards, “Zeolite minerals from Wat Ocheng, Ta Ang, Ratanakiri Province, Cambodia - occurrence, composition, and paragenesis,†Can. Mineral., vol. 60, no. 1, pp. 133–153, 2022. https://doi.org/10.3749/canmin.2000113.

J. L. Costafreda and D. A. Martín, “New deposit of Mordenite–Clinoptilolite in the Eastern Region of Cuba: uses as pozzolans,†Molecules, vol. 26, no. 15, pp. 4676, 2022. https://doi.org/10.3390/molecules26154676.

A. Vural and M. Albayrak, “Evaluation of gördes zeolites in terms of mineralogical, geochemical and environmental effects,†J. Eng. Res. Appl. Sci., vol. 9, no. 2, pp. 1503–1520, 2020. http://journaleras.com/index.php/jeras/article/view/216.

C. Covarrubias, R. García, R. Arriagada, J. Yánez, and M. T. Garland, “Cr(III) Exchange on zeolites obtained from kaolin and natural mordenite,†Microporous Mesoporous Mater., vol. 88, no. 1–3, pp. 220–231, 2006.

A. F. Gualtieri, E. Marchi, and E. Passaglia, “Zeolite content and cation exchange capacity of zeolite-rich rocks,†in Studies in Surface Science and Catalysis, vol. 125, Elsevier Science B.V., pp. 707–713, 1999.

F. Morante-Carballo, N. Montalván-Burbano, P. Carrión-Mero, and N. Espinoza-Santos, “Cation exchange of natural zeolites: worldwide research,†Sustainability, vol. 13, no. 14, pp. 7751, 2021 https://doi.org/10.3390/su13147751.

A. Filippidis, N. Kantiranis, M. Stamatakis, A. Drakoulis, and E. Tzamos, “The cation exchange capacity of the greek zeolitic rocks,†Bull. Geol. Soc. Greece, vol. 40, no. 2, pp. 723–735, 2007.

D. A. Holmes, “Zeolites,†in Industrial Minerals and Rocks, 6th Editio., D. D. Carr, Ed. Littleton: Society for Mining, Metallurgy, and Exploration, pp. 1129–1158, 1994.

I. Friberg, N. Sadokhina, and L. Olsson, “The effect of Si/Al ratio of zeolite supported pd for complete CH4 oxidation in the presence of water vapor and SO2,†Appl. Catal. B Environ., vol. 250, pp. 117–131, 2019. https://doi.org/10.1016/j.apcatb.2019.03.005.

Ç. Ceylan, “Geological, mineralogical, geochemical properties, and characterization of marine zeolite,†J. Ongoing Chem. Res., vol. 6, no. 1, pp. 10–14, 2021.

Diterbitkan
2023-04-28